Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Dec 15;256(3):733–739. doi: 10.1042/bj2560733

ATP-dependent interaction of propranolol and local anaesthetic with sarcoplasmic reticulum. Stimulation of Ca2+ efflux.

V Shoshan-Barmatz 1
PMCID: PMC1135477  PMID: 2975944

Abstract

Preincubation of sarcoplasmic reticulum (SR) with propranolol or tetracaine inhibits Ca2+ accumulation and stimulates ATPase activity by more than 2-fold. This effect is obtained only when the preincubation is carried out in the presence of ATP or other nucleoside triphosphates. The (ATP + drug)-induced inhibition of Ca2+ accumulation is pH-dependent, increasing as the pH rises above 7.5. The presence of micromolar concentrations of Ca2+ or Mg2+ during the preincubation prevents the inhibitory effect of ATP plus drug on Ca2+ accumulation or ATPase activity. The (ATP + drug) modification of SR vesicles resulted in stimulation of a rapid Ca2+ efflux from passively loaded vesicles. The ATP-dependent inhibition of Ca2+ accumulation by the drug is obtained with other local anaesthetics. The drug concentration required for 50% inhibition was 0.15 mM for dibucaine and 0.4 mM for both propranolol and tetracaine, whereas it was 5 mM, 8 mM and greater than 10 mM for lidocaine, benzocaine and procaine respectively. The heavy SR vesicles were only slightly affected by the incubation with propranolol or tetracaine in the presence of ATP, but their sensitivity increased markedly after storage at 0 degrees C for 24-48 h. These results suggest that propranolol and some local anaesthetics, in the presence of ATP, stimulate Ca2+ efflux by modifying a protein factor(s) rather than the phospholipid bilayer.

Full text

PDF
733

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoniu B., Kim D. H., Morii M., Ikemoto N. Inhibitors of Ca2+ release from the isolated sarcoplasmic reticulum. I. Ca2+ channel blockers. Biochim Biophys Acta. 1985 Jun 11;816(1):9–17. doi: 10.1016/0005-2736(85)90387-6. [DOI] [PubMed] [Google Scholar]
  2. Argaman A., Shoshan-Barmatz V. Dicyclohexylcarbodiimide interaction with sarcoplasmic reticulum. Inhibition of Ca2+ efflux. J Biol Chem. 1988 May 5;263(13):6315–6321. [PubMed] [Google Scholar]
  3. Bianchi C. P., Bolton T. C. Action of local anesthetics on coupling systems in muscle. J Pharmacol Exp Ther. 1967 Aug;157(2):388–405. [PubMed] [Google Scholar]
  4. Bianchi C. P. Pharmacological actions on excitation-contraction coupling in striated muscle. Fed Proc. 1968 Jan-Feb;27(1):126–131. [PubMed] [Google Scholar]
  5. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  6. Feinstein M. B., Volpi M., Perrie S., Makriyannis A., Sha'afi R. I. Mechanisms of local anesthetic action on the permeability of erythrocytes, leukocytes, and liposomes containing the erythrocyte anion channel protein. Mol Pharmacol. 1977 Sep;13(5):840–851. [PubMed] [Google Scholar]
  7. Heidmann T., Changeux J. P. Fast kinetic studies on the allosteric interactions between acetylcholine receptor and local anesthetic binding sites. Eur J Biochem. 1979 Feb 15;94(1):281–296. doi: 10.1111/j.1432-1033.1979.tb12894.x. [DOI] [PubMed] [Google Scholar]
  8. Herbette L., Messineo F. C., Katz A. M. The interaction of drugs with the sarcoplasmic reticulum. Annu Rev Pharmacol Toxicol. 1982;22:413–434. doi: 10.1146/annurev.pa.22.040182.002213. [DOI] [PubMed] [Google Scholar]
  9. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ikemoto N., Antoniu B., Kim D. H. Rapid calcium release from the isolated sarcoplasmic reticulum is triggered via the attached transverse tubular system. J Biol Chem. 1984 Nov 10;259(21):13151–13158. [PubMed] [Google Scholar]
  11. Kwant W. O., Seeman P. The displacement of membrane calcium by a local anesthetic (chlorpromazine). Biochim Biophys Acta. 1969;193(2):338–349. doi: 10.1016/0005-2736(69)90194-1. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. MacLennan D. H. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem. 1970 Sep 10;245(17):4508–4518. [PubMed] [Google Scholar]
  14. Martonosi A. N. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol Rev. 1984 Oct;64(4):1240–1320. doi: 10.1152/physrev.1984.64.4.1240. [DOI] [PubMed] [Google Scholar]
  15. Meissner G. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. J Biol Chem. 1984 Feb 25;259(4):2365–2374. [PubMed] [Google Scholar]
  16. Palade P., Mitchell R. D., Fleischer S. Spontaneous calcium release from sarcoplasmic reticulum. General description and effects of calcium. J Biol Chem. 1983 Jul 10;258(13):8098–8107. [PubMed] [Google Scholar]
  17. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  18. Pickart C. M., Jencks W. P. Slow dissociation of ATP from the calcium ATPase. J Biol Chem. 1982 May 25;257(10):5319–5322. [PubMed] [Google Scholar]
  19. Saida K., Suzuki A. Mode of action of prilocaine on sarcoplasmic reticulum in skinned skeletal muscle fibers. J Pharmacol Exp Ther. 1981 Dec;219(3):815–820. [PubMed] [Google Scholar]
  20. Scales B., McIntosh D. A. Effects of propranolol and its optical isomers on the radiocalcium uptake and the adenosine triphosphatases of skeletal and cardiac sarcoplasmic reticulum fractions (SRF). J Pharmacol Exp Ther. 1968 Apr;160(2):261–267. [PubMed] [Google Scholar]
  21. Shoshan-Barmatz V. Activation of Ca2+ release in isolated sarcoplasmic reticulum. J Membr Biol. 1988 Jul;103(1):67–77. doi: 10.1007/BF01871933. [DOI] [PubMed] [Google Scholar]
  22. Shoshan-Barmatz V. Chemical modification of sarcoplasmic reticulum. Stimulation of Ca2+ release. Biochem J. 1986 Dec 1;240(2):509–517. doi: 10.1042/bj2400509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shoshan-Barmatz V. Stimulation of Ca2+ efflux from sarcoplasmic reticulum by preincubation with ATP and inorganic phosphate. Biochem J. 1987 Nov 1;247(3):497–504. doi: 10.1042/bj2470497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith J. S., Coronado R., Meissner G. Single-channel calcium and barium currents of large and small conductance from sarcoplasmic reticulum. Biophys J. 1986 Nov;50(5):921–928. doi: 10.1016/S0006-3495(86)83533-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suarez-Isla B. A., Orozco C., Heller P. F., Froehlich J. P. Single calcium channels in native sarcoplasmic reticulum membranes from skeletal muscle. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7741–7745. doi: 10.1073/pnas.83.20.7741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Taguchi T., Kasai M. Tetraphenylboron increases choline permeability through a calcium release channel of isolated sarcoplasmic reticulum. J Biochem. 1984 Jul;96(1):179–188. doi: 10.1093/oxfordjournals.jbchem.a134811. [DOI] [PubMed] [Google Scholar]
  27. Volpe P., Salviati G., Di Virgilio F., Pozzan T. Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature. 1985 Jul 25;316(6026):347–349. doi: 10.1038/316347a0. [DOI] [PubMed] [Google Scholar]
  28. de Boland A. R., Jilka R. L., Martonosi A. N. Passive Ca2+ permeability of phospholipid vesicles and sarcoplasmic reticulum membranes. J Biol Chem. 1975 Sep 25;250(18):7501–7510. [PubMed] [Google Scholar]
  29. de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES