Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Dec 15;256(3):763–768. doi: 10.1042/bj2560763

Phosphorylation of class I histocompatibility antigens in human B lymphocytes. Regulation by phorbol esters and insulin.

J F Peyron 1, M Fehlmann 1
PMCID: PMC1135481  PMID: 3066355

Abstract

Phosphorylation of membrane proteins is one of the earliest steps in cell activation induced by growth-promoting agents. Since MHC (major histocompatibility complex) class I molecules are known to contain phosphorylation sites in their C-terminal intracellular domain, we have studied the regulation of HLA (human leucocyte antigen) phosphorylation in intact cells by two mitogens, namely TPA (12-O-tetradecanoylphorbol 13-acetate), a phorbol ester, and insulin, which are thought to exert their mitogenic effects through the stimulation of different protein kinases (protein kinase C and a tyrosine kinase respectively). Human B lymphoblastoid cells (526 cell line) were pulsed with [32P]Pi to label the intracellular ATP pool. Cells were then stimulated for 10 min with TPA, insulin, cyclic AMP or EGF (epidermal growth factor). The reaction was stopped by cell lysis in the presence of kinase and phosphatase inhibitors, and class I HLA antigens were immunoprecipitated with monoclonal antibodies. Analysis of labelled proteins by gel electrophoresis and autoradiography revealed that TPA increased the phosphorylation of the 45 kDa class I heavy chain by 5-7-fold, and insulin increased it by 2-3-fold. Cyclic AMP and EGF had no stimulatory effect. Analysis of immunoprecipitated HLA molecules by two-dimensional gel electrophoresis showed that TPA and insulin stimulated the incorporation of 32P into different 45 kDa molecular species, suggesting that different sites were phosphorylated by two agents. Moreover, incubation of purified class I MHC antigens with partially purified insulin-receptor tyrosine kinase and [gamma-32P]ATP revealed that class I antigens could also be phosphorylated in vitro by this tyrosine kinase. Altogether, these results therefore confirm that insulin receptors and HLA class I molecules are not only structurally [Fehlmann, Peyron, Samson, Van Obberghen, Brandenburg & Brossette (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8634-8637] but also functionally associated in the membranes of intact cells.

Full text

PDF
763

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourguignon L. Y., Walker G., Bourguignon G. J. Phorbol ester-induced phosphorylation of a transmembrane glycoprotein (GP 180) in human blood platelets. J Biol Chem. 1985 Sep 25;260(21):11775–11780. [PubMed] [Google Scholar]
  2. Cabral F., Schatz G. High resolution one- and two- dimensional electrophoretic analysis of mitochondrial membrane polypeptides. Methods Enzymol. 1979;56:602–613. doi: 10.1016/0076-6879(79)56057-1. [DOI] [PubMed] [Google Scholar]
  3. Cantrell D. A., Davies A. A., Crumpton M. J. Activators of protein kinase C down-regulate and phosphorylate the T3/T-cell antigen receptor complex of human T lymphocytes. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8158–8162. doi: 10.1073/pnas.82.23.8158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  5. Chvatchko Y., Van Obberghen E., Kiger N., Fehlmann M. Immunoprecipitation of insulin receptors by antibodies against Class 1 antigens of the murine H-2 major histocompatibility complex. FEBS Lett. 1983 Nov 14;163(2):207–211. doi: 10.1016/0014-5793(83)80820-5. [DOI] [PubMed] [Google Scholar]
  6. Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982 Apr 15;296(5858):613–620. doi: 10.1038/296613a0. [DOI] [PubMed] [Google Scholar]
  7. Curry R. A., Messner R. P., Johnson G. J. Inhibition of platelet aggregation by monoclonal antibody reactive with beta 2-microglobulin chain of HLA complex. Science. 1984 May 4;224(4648):509–511. doi: 10.1126/science.6324346. [DOI] [PubMed] [Google Scholar]
  8. Davies A. A., Cantrell D. A., Crumpton M. J. Activation of protein kinase C modulates the expression of the T3/T cell antigen receptor complex on human T lymphocytes. Biosci Rep. 1985 Oct-Nov;5(10-11):867–876. doi: 10.1007/BF01119898. [DOI] [PubMed] [Google Scholar]
  9. Fehlmann M., Peyron J. F., Samson M., Van Obberghen E., Brandenburg D., Brossette N. Molecular association between major histocompatibility complex class I antigens and insulin receptors in mouse liver membranes. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8634–8637. doi: 10.1073/pnas.82.24.8634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feuerstein N., Monos D. S., Cooper H. L. Phorbol ester effect in platelets, lymphocytes, and leukemic cells (HL-60) is associated with enhanced phosphorylation of class I HLA antigens. Coprecipitation of myosin light chain. Biochem Biophys Res Commun. 1985 Jan 16;126(1):206–213. doi: 10.1016/0006-291x(85)90592-3. [DOI] [PubMed] [Google Scholar]
  11. Goodenow R. S., Vogel J. M., Linsk R. L. Histocompatibility antigens on murine tumors. Science. 1985 Nov 15;230(4727):777–783. doi: 10.1126/science.2997918. [DOI] [PubMed] [Google Scholar]
  12. Greengard P. Phosphorylated proteins as physiological effectors. Science. 1978 Jan 13;199(4325):146–152. doi: 10.1126/science.22932. [DOI] [PubMed] [Google Scholar]
  13. Guild B. C., Erikson R. L., Strominger J. L. HLA-A2 and HLA-B7 antigens are phosphorylated in vitro by rous sarcoma virus kinase (pp60v-src) at a tyrosine residue encoded in a highly conserved exon of the intracellular domain. Proc Natl Acad Sci U S A. 1983 May;80(10):2894–2898. doi: 10.1073/pnas.80.10.2894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guild B. C., Strominger J. L. HLA-A2 antigen phosphorylation in vitro by cyclic AMP-dependent protein kinase. Sites of phosphorylation and segmentation in class i major histocompatibility complex gene structure. J Biol Chem. 1984 Nov 10;259(21):13504–13510. [PubMed] [Google Scholar]
  15. Guild B. C., Strominger J. L. Human and murine class I MHC antigens share conserved serine 335, the site of HLA phosphorylation in vivo. J Biol Chem. 1984 Jul 25;259(14):9235–9240. [PubMed] [Google Scholar]
  16. Hedo J. A., Kasuga M., Van Obberghen E., Roth J., Kahn C. R. Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic and external labeling: evidence for heterogeneity. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4791–4795. doi: 10.1073/pnas.78.8.4791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Helderman J. H. T cell cooperation for the genesis of B cell insulin receptors. J Immunol. 1983 Aug;131(2):644–650. [PubMed] [Google Scholar]
  18. Hunter T., Cooper J. A. Protein-tyrosine kinases. Annu Rev Biochem. 1985;54:897–930. doi: 10.1146/annurev.bi.54.070185.004341. [DOI] [PubMed] [Google Scholar]
  19. Hunter T., Ling N., Cooper J. A. Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature. 1984 Oct 4;311(5985):480–483. doi: 10.1038/311480a0. [DOI] [PubMed] [Google Scholar]
  20. Jacobs S., Sahyoun N. E., Saltiel A. R., Cuatrecasas P. Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6211–6213. doi: 10.1073/pnas.80.20.6211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kikkawa U., Takai Y., Tanaka Y., Miyake R., Nishizuka Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 1983 Oct 10;258(19):11442–11445. [PubMed] [Google Scholar]
  22. Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Loube S. R., Owen M. J., Crumpton M. J. Human class I histocompatibility antigens (HLA-A,B,C). A small proportion only is phosphorylated. Biochem J. 1983 Jan 15;210(1):79–87. doi: 10.1042/bj2100079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. May W. S., Sahyoun N., Jacobs S., Wolf M., Cuatrecasas P. Mechanism of phorbol diester-induced regulation of surface transferrin receptor involves the action of activated protein kinase C and an intact cytoskeleton. J Biol Chem. 1985 Aug 5;260(16):9419–9426. [PubMed] [Google Scholar]
  26. Pober J. S., Guild B. C., Strominger J. L. Phosphorylation in vivo and in vitro of human histocompatibility antigens (HLA-A and HLA-B) in the carboxy-terminal intracellular domain. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6002–6006. doi: 10.1073/pnas.75.12.6002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Samson M., Cousin J. L., Fehlmann M. Cross-linking of insulin receptors to MHC antigens in human B lymphocytes: evidence for selective molecular interactions. J Immunol. 1986 Oct 1;137(7):2293–2298. [PubMed] [Google Scholar]
  28. Schreiber A. B., Schlessinger J., Edidin M. Interaction between major histocompatibility complex antigens and epidermal growth factor receptors on human cells. J Cell Biol. 1984 Feb;98(2):725–731. doi: 10.1083/jcb.98.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sibley D. R., Lefkowitz R. J. Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature. 1985 Sep 12;317(6033):124–129. doi: 10.1038/317124a0. [DOI] [PubMed] [Google Scholar]
  30. Simonsen M., Olsson L. Possible roles of compound membrane receptors in the immune system. Ann Immunol (Paris) 1983 Jul-Aug;134D(1):85–92. doi: 10.1016/s0769-2625(83)80059-2. [DOI] [PubMed] [Google Scholar]
  31. Simonsen M., Skjødt K., Crone M., Sanderson A., Fujita-Yamaguchi Y., Due C., Rønne E., Linnet K., Olsson L. Compound receptors in the cell membrane: ruminations from the borderland of immunology and physiology. Prog Allergy. 1985;36:151–176. [PubMed] [Google Scholar]
  32. Takayama S., White M. F., Lauris V., Kahn C. R. Phorbol esters modulate insulin receptor phosphorylation and insulin action in cultured hepatoma cells. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7797–7801. doi: 10.1073/pnas.81.24.7797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Van Obberghen E., Rossi B., Kowalski A., Gazzano H., Ponzio G. Receptor-mediated phosphorylation of the hepatic insulin receptor: evidence that the Mr 95,000 receptor subunit is its own kinase. Proc Natl Acad Sci U S A. 1983 Feb;80(4):945–949. doi: 10.1073/pnas.80.4.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. White M. F., Takayama S., Kahn C. R. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro. J Biol Chem. 1985 Aug 5;260(16):9470–9478. [PubMed] [Google Scholar]
  35. Wolf M., LeVine H., 3rd, May W. S., Jr, Cuatrecasas P., Sahyoun N. A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature. 1985 Oct 10;317(6037):546–549. doi: 10.1038/317546a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES