Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jan 1;257(1):187–190. doi: 10.1042/bj2570187

Transient-time analysis of substrate-channelling in interacting enzyme systems.

J Ovádi 1, P Tompa 1, B Vértessy 1, F Orosz 1, T Keleti 1, G R Welch 1
PMCID: PMC1135554  PMID: 2920010

Abstract

The kinetics of dynamically interacting enzyme systems is examined, in the light of increasing evidence attesting to the widespread occurrence of this mode of organization in vivo. The transient time, a key phenomenological parameter for the coupled reaction, is expressed as a function of the lifetime of the intermediate substrate. The relationships between the transient time and the pseudo-first-order rate constants for the coupled reaction by the complexed and uncomplexed enzyme species are indicative of the mechanism of intermediate transfer ('channelling'). In a dynamically interacting enzyme system these kinetic parameters are composite functions of those for the processes catalysed by the complex and by the separated enzymes. The mathematical paradigm can be extended to a linear sequence of N coupled reactions catalysed by dynamically (pair-wise) interacting enzymes.

Full text

PDF
187

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clegg J. S. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol. 1984 Feb;246(2 Pt 2):R133–R151. doi: 10.1152/ajpregu.1984.246.2.R133. [DOI] [PubMed] [Google Scholar]
  2. Easterby J. S. A generalized theory of the transition time for sequential enzyme reactions. Biochem J. 1981 Oct 1;199(1):155–161. doi: 10.1042/bj1990155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Easterby J. S. Coupled enzyme assays: a general expression for the transient. Biochim Biophys Acta. 1973 Feb 15;293(2):552–558. doi: 10.1016/0005-2744(73)90362-8. [DOI] [PubMed] [Google Scholar]
  4. Easterby J. S. The kinetics of consecutive enzyme reactions. The design of coupled assays and the temporal response of pathways. Biochem J. 1984 May 1;219(3):843–847. doi: 10.1042/bj2190843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hess B., Wurster B. Transient time of the pyruvate kinase-lactate dehydrogenase system of rabbit muscle in vitro. FEBS Lett. 1970 Jul 29;9(2):73–77. doi: 10.1016/0014-5793(70)80316-7. [DOI] [PubMed] [Google Scholar]
  6. Keleti T., Batke J., Ovádi J., Jancsik V., Bartha F. Macromolecular interactions in enzyme regulation. Adv Enzyme Regul. 1976;15:233–265. doi: 10.1016/0065-2571(77)90019-x. [DOI] [PubMed] [Google Scholar]
  7. Keleti T., Welch G. R. The evolution of enzyme kinetic power. Biochem J. 1984 Oct 15;223(2):299–303. doi: 10.1042/bj2230299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Masters C. J. Interactions between soluble enzymes and subcellular structure. CRC Crit Rev Biochem. 1981;11(2):105–143. doi: 10.3109/10409238109108700. [DOI] [PubMed] [Google Scholar]
  9. Nichol L. W., Kuchel P. W., Jeffrey P. D. The detection and consequences of association of two enzymes involved in catalysing consecutive reactions. Biophys Chem. 1974 Dec;2(4):354–358. doi: 10.1016/0301-4622(74)80062-1. [DOI] [PubMed] [Google Scholar]
  10. Orosz F., Ovádi J. Dynamic interactions of enzymes involved in triosephosphate metabolism. Eur J Biochem. 1986 Nov 3;160(3):615–619. doi: 10.1111/j.1432-1033.1986.tb10082.x. [DOI] [PubMed] [Google Scholar]
  11. Osawa T., Tsuji T. Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu Rev Biochem. 1987;56:21–42. doi: 10.1146/annurev.bi.56.070187.000321. [DOI] [PubMed] [Google Scholar]
  12. Rapoport T. A., Heinrich R. Mathematical analysis of multienzyme systems. I. Modelling of the glycolysis of human erythrocytes. Biosystems. 1975 Jul;7(1):120–129. doi: 10.1016/0303-2647(75)90049-0. [DOI] [PubMed] [Google Scholar]
  13. Srivastava D. K., Bernhard S. A. Enzyme-enzyme interactions and the regulation of metabolic reaction pathways. Curr Top Cell Regul. 1986;28:1–68. doi: 10.1016/b978-0-12-152828-7.50003-2. [DOI] [PubMed] [Google Scholar]
  14. Tompa P., Batke J., Ovádi J. How to determine the efficiency of intermediate transfer in an interacting enzyme system? FEBS Lett. 1987 Apr 20;214(2):244–248. doi: 10.1016/0014-5793(87)80063-7. [DOI] [PubMed] [Google Scholar]
  15. Welch G. R. On the free energy "cost of transition" in intermediary metabolic processes and the evolution of cellular infrastructure. J Theor Biol. 1977 Sep 21;68(2):267–291. doi: 10.1016/0022-5193(77)90165-5. [DOI] [PubMed] [Google Scholar]
  16. Welch G. R. On the role of organized multienzyme systems in cellular metabolism: a general synthesis. Prog Biophys Mol Biol. 1977;32(2):103–191. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES