Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jan 15;257(2):347–354. doi: 10.1042/bj2570347

Chondroitinase ABC digestion of dermatan sulphate. N.m.r. spectroscopic characterization of the oligo- and poly-saccharides.

P N Sanderson 1, T N Huckerby 1, I A Nieduszynski 1
PMCID: PMC1135586  PMID: 2930454

Abstract

Dermatan sulphates, in which iduronate was the predominant uronate constituent, were partially digested by chondroitinase ABC to produce oligosaccharides of the following structure: delta UA-[GalNAc(4SO3)-IdoA]mGalNAc(4SO3) [where m = 0-5, delta UA represents beta-D-gluco-4-enepyranosyluronate, IdoA represents alpha-L-iduronate and GalNAc(4SO3) represents 2-acetamido-2-deoxy-beta-D-galactose 4-O-sulphate], which were fractionated by gel-permeation chromatography and examined by 100 MHz 13C-n.m.r. and 400/500 MHz 1H-n.m.r. spectroscopy. Experimental conditions were established for the removal of non-reducing terminal unsaturated uronate residues by treatment with HgCL2, and reducing terminal N-acetylgalactosamine residues of the oligosaccharides were reduced with alkaline borohydride. These modifications were shown by 13C-n.m.r. spectroscopy to have proceeded to completion. Assignments of both 13C-n.m.r. and 1H-n.m.r. resonances are reported for the GalNAc(4SO3)-IdoA repeat sequence in the oligosaccharides as well as for the terminal residues resulting from enzyme digestion and subsequent modifications. A full analysis of a trisaccharide derived from dermatan sulphate led to the amendment of published 13C-n.m.r. chemical-shift assignments for the polymer.

Full text

PDF
347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bociek S. M., Darke A. H., Welti D., Rees D. A. The 13C-NMR spectra of hyaluronate and chondroitin sulphates. Further evidence on an alkali-induced conformation change. Eur J Biochem. 1980 Aug;109(2):447–456. doi: 10.1111/j.1432-1033.1980.tb04814.x. [DOI] [PubMed] [Google Scholar]
  2. Casu B., Choay J., Ferro D. R., Gatti G., Jacquinet J. C., Petitou M., Provasoli A., Ragazzi M., Sinay P., Torri G. Controversial glycosaminoglycan conformations. Nature. 1986 Jul 17;322(6076):215–216. doi: 10.1038/322215b0. [DOI] [PubMed] [Google Scholar]
  3. Fransson L. A., Carlstedt I. Alkaline and smith degradation of oxidized dermatan sulphate-chondroitin sulphate copolymers. Carbohydr Res. 1974 Sep;36(2):349–358. doi: 10.1016/s0008-6215(00)83056-6. [DOI] [PubMed] [Google Scholar]
  4. Gallagher J. T., Gasiunas N., Schor S. L. Specific association of iduronic acid-rich dermatan sulphate with the extracellular matrix of human skin fibroblasts cultured on collagen gels. Biochem J. 1983 Oct 1;215(1):107–116. doi: 10.1042/bj2150107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamer G. K., Perlin A. S. A 13C-N.M.R. spectral study of chondroitin sulfates A, B, and C: evidence of heterogeneity. Carbohydr Res. 1976 Jul;49:37–48. doi: 10.1016/s0008-6215(00)83123-7. [DOI] [PubMed] [Google Scholar]
  6. Huckerby T. N., Sanderson P. N., Nieduszynski I. A. N.m.r. studies of oligosaccharides obtained by degradation of bovine lung heparin with nitrous acid. Carbohydr Res. 1986 Oct 15;154:15–27. doi: 10.1016/s0008-6215(00)90018-1. [DOI] [PubMed] [Google Scholar]
  7. Lewandowska K., Choi H. U., Rosenberg L. C., Zardi L., Culp L. A. Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan-binding domain. J Cell Biol. 1987 Sep;105(3):1443–1454. doi: 10.1083/jcb.105.3.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lindahl U., Hök M. Glycosaminoglycans and their binding to biological macromolecules. Annu Rev Biochem. 1978;47:385–417. doi: 10.1146/annurev.bi.47.070178.002125. [DOI] [PubMed] [Google Scholar]
  9. Ludwigs U., Elgavish A., Esko J. D., Meezan E., Rodén L. Reaction of unsaturated uronic acid residues with mercuric salts. Cleavage of the hyaluronic acid disaccharide 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-glucose. Biochem J. 1987 Aug 1;245(3):795–804. doi: 10.1042/bj2450795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rosenberg L. C., Choi H. U., Tang L. H., Johnson T. L., Pal S., Webber C., Reiner A., Poole A. R. Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem. 1985 May 25;260(10):6304–6313. [PubMed] [Google Scholar]
  11. Sanderson P. N., Huckerby T. N., Nieduszynski I. A. Conformational equilibria of alpha-L-iduronate residues in disaccharides derived from heparin. Biochem J. 1987 Apr 1;243(1):175–181. doi: 10.1042/bj2430175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schmidt G., Robenek H., Harrach B., Glössl J., Nolte V., Hörmann H., Richter H., Kresse H. Interaction of small dermatan sulfate proteoglycan from fibroblasts with fibronectin. J Cell Biol. 1987 Jun;104(6):1683–1691. doi: 10.1083/jcb.104.6.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Scott J. E., Haigh M. Proteoglycan-type I collagen fibril interactions in bone and non-calcifying connective tissues. Biosci Rep. 1985 Jan;5(1):71–81. doi: 10.1007/BF01117443. [DOI] [PubMed] [Google Scholar]
  14. Tollefsen D. M., Peacock M. E., Monafo W. J. Molecular size of dermatan sulfate oligosaccharides required to bind and activate heparin cofactor II. J Biol Chem. 1986 Jul 5;261(19):8854–8858. [PubMed] [Google Scholar]
  15. Tollefsen D. M., Pestka C. A., Monafo W. J. Activation of heparin cofactor II by dermatan sulfate. J Biol Chem. 1983 Jun 10;258(11):6713–6716. [PubMed] [Google Scholar]
  16. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES