Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jan 15;257(2):541–548. doi: 10.1042/bj2570541

Purification and kinetic mechanism of the major glutathione S-transferase from bovine brain.

P R Young 1, A V Briedis 1
PMCID: PMC1135612  PMID: 2930465

Abstract

The major glutathione S-transferase isoenzyme from bovine brain was isolated and purified approx. 500-fold. The enzyme has a pI of 7.39 +/- 0.02 and consists of two non-identical subunits having apparent Mr values of 22,000 and 24,000. The enzyme is uniformly distributed in brain, and kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate suggest a random rapid-equilibrium mechanism. The kinetics of inhibition by product, by GSH analogues and by NADH are consistent with the suggested mechanism and require inhibitor binding to several different enzyme forms. Long-chain fatty acids are excellent inhibitors of the enzyme, and values of 1nKi for hexanoic acid, octanoic acid, decanoic acid and lauric acid form a linear series when plotted as a function of alkyl chain length. A free-energy change of -1900 J/mol (-455 cal/mol) per CH2 unit is calculated for the contribution of hydrophobic binding energy to the inhibition constants. The turnover number of the purified enzyme dimer is approx. 3400/min. When compared with the second-order rate constant for the reaction between CDNB and GSH, the enzyme is providing a rate acceleration of about 1000-fold. The role of entropic contributions to this small rate acceleration is discussed.

Full text

PDF
541

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Kawazoe Y., Tsunematsu H., Shigematsu N. Peritoneal macrophages of guinea pig possibly lack LTC4 synthetase. Biochem Biophys Res Commun. 1985 Feb 28;127(1):15–23. doi: 10.1016/s0006-291x(85)80119-4. [DOI] [PubMed] [Google Scholar]
  2. Abramovitz M., Listowsky I. Selective expression of a unique glutathione S-transferase Yb3 gene in rat brain. J Biol Chem. 1987 Jun 5;262(16):7770–7773. [PubMed] [Google Scholar]
  3. Alin P., Danielson U. H., Mannervik B. 4-Hydroxyalk-2-enals are substrates for glutathione transferase. FEBS Lett. 1985 Jan 7;179(2):267–270. doi: 10.1016/0014-5793(85)80532-9. [DOI] [PubMed] [Google Scholar]
  4. Asaoka K., Ito H., Takahashi K. Monkey glutathione S-aryltransferases. I. Tissue distribution and purification from the liver. J Biochem. 1977 Oct;82(4):973–981. doi: 10.1093/oxfordjournals.jbchem.a131802. [DOI] [PubMed] [Google Scholar]
  5. Askelöf P., Guthenberg C., Jakobson I., Mannervik B. Purification and characterization of two glutathione S-aryltransferase activities from rat liver. Biochem J. 1975 Jun;147(3):513–522. doi: 10.1042/bj1470513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Awasthi Y. C., Singh S. V. Purification and characterization of a new form of glutathione S-transferase from human erythrocytes. Biochem Biophys Res Commun. 1984 Dec 28;125(3):1053–1060. doi: 10.1016/0006-291x(84)91390-1. [DOI] [PubMed] [Google Scholar]
  7. Bass N. M., Kirsch R. E., Tuff S. A., Marks I., Saunders S. J. Ligandin heterogeneity : evidence that the two non-identical subunits are the monomers of two distinct proteins. Biochim Biophys Acta. 1977 May 27;492(1):163–175. doi: 10.1016/0005-2795(77)90223-9. [DOI] [PubMed] [Google Scholar]
  8. Burgess J. R., Yang H., Chang M., Rao M. K., Tu C. P., Reddy C. C. Enzymatic transformation of PGH2 to PGF2 alpha catalyzed by glutathione S-transferases. Biochem Biophys Res Commun. 1987 Jan 30;142(2):441–447. doi: 10.1016/0006-291x(87)90294-4. [DOI] [PubMed] [Google Scholar]
  9. Chen W. J., Boehlert C. C., Rider K., Armstrong R. N. Synthesis and characterization of the oxygen and desthio analogues of glutathione as dead-end inhibitors of glutathione S-transferase. Biochem Biophys Res Commun. 1985 Apr 16;128(1):233–240. doi: 10.1016/0006-291x(85)91669-9. [DOI] [PubMed] [Google Scholar]
  10. Clark A. G., Carrol N. Suppression of high-affinity ligand binding to the major glutathione S-transferase from Galleria mellonella by physiological concentrations of glutathione. Biochem J. 1986 Jan 15;233(2):325–331. doi: 10.1042/bj2330325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Danielson U. H., Esterbauer H., Mannervik B. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases. Biochem J. 1987 Nov 1;247(3):707–713. doi: 10.1042/bj2470707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Danielson U. H., Mannervik B. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem J. 1985 Oct 15;231(2):263–267. doi: 10.1042/bj2310263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Douglas K. T. Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol. 1987;59:103–167. doi: 10.1002/9780470123058.ch3. [DOI] [PubMed] [Google Scholar]
  14. Evans C. G., Bodell W. J., Tokuda K., Doane-Setzer P., Smith M. T. Glutathione and related enzymes in rat brain tumor cell resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea and nitrogen mustard. Cancer Res. 1987 May 15;47(10):2525–2530. [PubMed] [Google Scholar]
  15. Gitler C., Ochoa-Solano A. Nonpolar contributions to the rate of nucleophilic displacements of p-nitrophenyl esters in micelles. J Am Chem Soc. 1968 Aug 28;90(18):5004–5009. doi: 10.1021/ja01020a040. [DOI] [PubMed] [Google Scholar]
  16. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  17. Hayes J. D., Mantle T. J. Anomalous electrophoretic behaviour of the glutathione S-transferase Ya and Yk subunits isolated from man and rodents. A potential pitfall for nomenclature. Biochem J. 1986 Aug 1;237(3):731–740. doi: 10.1042/bj2370731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jagt D. L., Wilson S. P., Dean V. L., Simons P. C. Bilirubin binding to rat liver ligandins (glutathione S-transferases A and B). Relationship between bilirubin binding and transferase activity. J Biol Chem. 1982 Feb 25;257(4):1997–2001. [PubMed] [Google Scholar]
  19. Jakobson I., Askelöf P., Warholm M., Mannervik B. A steady-state-kinetic random mechanism for glutathione S-transferase A from rat liver. A model involving kinetically significant enzyme-product complexes in the forward reaction. Eur J Biochem. 1977 Jul 15;77(2):253–262. doi: 10.1111/j.1432-1033.1977.tb11664.x. [DOI] [PubMed] [Google Scholar]
  20. Jakoby W. B. The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol. 1978;46:383–414. doi: 10.1002/9780470122914.ch6. [DOI] [PubMed] [Google Scholar]
  21. Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
  22. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mannervik B., Jensson H. Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol. J Biol Chem. 1982 Sep 10;257(17):9909–9912. [PubMed] [Google Scholar]
  24. Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol. 1985;57:357–417. doi: 10.1002/9780470123034.ch5. [DOI] [PubMed] [Google Scholar]
  25. Manoharan T. H., Puchalski R. B., Burgess J. A., Pickett C. B., Fahl W. E. Promoter-glutathione S-transferase Ya cDNA hybrid genes. Expression and conferred resistance to an alkylating molecule in mammalian cells. J Biol Chem. 1987 Mar 15;262(8):3739–3745. [PubMed] [Google Scholar]
  26. Pabst M. J., Habig W. H., Jakoby W. B. Glutathione S-transferase A. A novel kinetic mechanism in which the major reaction pathway depends on substrate concentration. J Biol Chem. 1974 Nov 25;249(22):7140–7147. [PubMed] [Google Scholar]
  27. Page M. I., Jencks W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1678–1683. doi: 10.1073/pnas.68.8.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pemble S. E., Taylor J. B., Craig R. K., Ketterer B. Differential tissue expression of the glutathione transferase multigene family. Biochem J. 1986 Sep 1;238(2):373–378. doi: 10.1042/bj2380373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rothkopf G. S., Telakowski-Hopkins C. A., Stotish R. L., Pickett C. B. Multiplicity of glutathione S-transferase genes in the rat and association with a type 2 Alu repetitive element. Biochemistry. 1986 Mar 11;25(5):993–1002. doi: 10.1021/bi00353a007. [DOI] [PubMed] [Google Scholar]
  30. Satoh K., Kitahara A., Sato K. Identification of heterogeneous and microheterogeneous subunits of glutathione S-transferase in rat liver cytosol. Arch Biochem Biophys. 1985 Oct;242(1):104–111. doi: 10.1016/0003-9861(85)90484-9. [DOI] [PubMed] [Google Scholar]
  31. Scott T. R., Kirsch R. E. The isolation of a fetal rat liver glutathione S-transferase isoenzyme with high glutathione peroxidase activity. Biochim Biophys Acta. 1987 Dec 7;926(3):264–269. doi: 10.1016/0304-4165(87)90212-1. [DOI] [PubMed] [Google Scholar]
  32. Senjo M., Ishibashi T., Imai Y. Purification and characterization of cytosolic liver protein facilitating heme transport into apocytochrome b5 from mitochondria. Evidence for identifying the heme transfer protein as belonging to a group of glutathione S-transferases. J Biol Chem. 1985 Aug 5;260(16):9191–9196. [PubMed] [Google Scholar]
  33. Simons P. C., Vander Jagt D. L. Purification of glutathione S-transferases from human liver by glutathione-affinity chromatography. Anal Biochem. 1977 Oct;82(2):334–341. doi: 10.1016/0003-2697(77)90169-5. [DOI] [PubMed] [Google Scholar]
  34. Singh S. V., Awasthi Y. C. Cationic glutathione S-transferase of human erythrocytes has unique kinetic characteristics among human glutathione S-transferases. Biochem Biophys Res Commun. 1986 Jun 30;137(3):1174–1180. doi: 10.1016/0006-291x(86)90349-9. [DOI] [PubMed] [Google Scholar]
  35. Spearman M. E., Prough R. A., Estabrook R. W., Falck J. R., Manna S., Leibman K. C., Murphy R. C., Capdevila J. Novel glutathione conjugates formed from epoxyeicosatrienoic acids (EETs). Arch Biochem Biophys. 1985 Oct;242(1):225–230. doi: 10.1016/0003-9861(85)90496-5. [DOI] [PubMed] [Google Scholar]
  36. Stenersen J., Guthenberg C., Mannervik B. Glutathione S-transferases in earthworms (Lumbricidae). Biochem J. 1979 Jul 1;181(1):47–50. doi: 10.1042/bj1810047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sun F. F., Chau L. Y., Austen K. F. Binding of leukotriene C4 by glutathione transferase: a reassessment of biochemical and functional criteria for leukotriene receptors. Fed Proc. 1987 Jan;46(1):204–207. [PubMed] [Google Scholar]
  38. Sun F. F., Chau L. Y., Spur B., Corey E. J., Lewis R. A., Austen K. F. Identification of a high affinity leukotriene C4-binding protein in rat liver cytosol as glutathione S-transferase. J Biol Chem. 1986 Jun 25;261(18):8540–8546. [PubMed] [Google Scholar]
  39. Söderström M., Mannervik B., Orning L., Hammarström S. Leukotriene C4 formation catalyzed by three distinct forms of human cytosolic glutathione transferase. Biochem Biophys Res Commun. 1985 Apr 16;128(1):265–270. doi: 10.1016/0006-291x(85)91673-0. [DOI] [PubMed] [Google Scholar]
  40. Takikawa H., Stolz A., Sugimoto M., Sugiyama Y., Kaplowitz N. Comparison of the affinities of newly identified human bile acid binder and cationic glutathione S-transferase for bile acids. J Lipid Res. 1986 Jun;27(6):652–657. [PubMed] [Google Scholar]
  41. Takikawa H., Sugiyama Y., Kaplowitz N. Binding of bile acids by glutathione S-transferases from rat liver. J Lipid Res. 1986 Sep;27(9):955–966. [PubMed] [Google Scholar]
  42. Telakowski-Hopkins C. A., Rothkopf G. S., Pickett C. B. Structural analysis of a rat liver glutathione S-transferase Ya gene. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9393–9397. doi: 10.1073/pnas.83.24.9393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Theodore C., Singh S. V., Hong T. D., Awasthi Y. C. Glutathione S-transferases of human brain. Evidence for two immunologically distinct types of 26500-Mr subunits. Biochem J. 1985 Jan 15;225(2):375–382. doi: 10.1042/bj2250375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tu C. P., Reddy C. C. On the multiplicity of rat liver glutathione S-transferases. J Biol Chem. 1985 Aug 25;260(18):9961–9964. [PubMed] [Google Scholar]
  45. Wang I. Y., Tung E., Wang A. C., Argenbright L., Wang R., Pickett C. B., Lu A. Y. Multiple Ya subunits of glutathione S-transferase detected by monoclonal antibodies. Arch Biochem Biophys. 1986 Mar;245(2):543–547. doi: 10.1016/0003-9861(86)90249-3. [DOI] [PubMed] [Google Scholar]
  46. Wu C. Conversion of leukotrienes A4 to C4 in cell-free systems. Biochem Biophys Res Commun. 1986 Jan 14;134(1):85–92. doi: 10.1016/0006-291x(86)90530-9. [DOI] [PubMed] [Google Scholar]
  47. Yoshimoto T., Soberman R. J., Lewis R. A., Austen K. F. Isolation and characterization of leukotriene C4 synthetase of rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8399–8403. doi: 10.1073/pnas.82.24.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES