Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jan 15;257(2):611–614. doi: 10.1042/bj2570611

Essential role of magnesium in oxytocin-receptor affinity and ligand specificity.

F A Antoni 1, S E Chadio 1
PMCID: PMC1135623  PMID: 2539090

Abstract

We have analysed, with the aid of a novel radioiodinated oxytocin (OT)-receptor antagonist, the role of Mg2+ in uterine OT-receptor function. The antagonist-receptor interaction was characterized by high affinity, reversibility and stereospecificity in Tris/HCl buffer containing 3 mmol of Mg2+/litre as well as buffer free of Mg2+. By contrast, omission of Mg2+ decreased the affinity of the receptor for OT by about 1500-fold; moreover, the stereospecificity of agonist, but not antagonist, binding was lost. Since guanine nucleotides had relatively minor effects in this system (less than or equal to 2-fold decrease in OT affinity), we suggest that the agonist-binding site of OT receptors is directly modulated by Mg2+, unlike other receptors, where the effects of bivalent cations are exerted via guanine-nucleotide-binding (G-) proteins. Thus the ligand recognition mechanism of OT receptors may be novel in this respect.

Full text

PDF
611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoni F. A. Characterization of high affinity binding sites for vasopressin in bovine adrenal medulla. Neuropeptides. 1984 Sep;4(5):413–420. doi: 10.1016/0143-4179(84)90116-1. [DOI] [PubMed] [Google Scholar]
  2. Antoni F. A. Oxytocin receptors in rat adenohypophysis: evidence from radioligand binding studies. Endocrinology. 1986 Nov;119(5):2393–2395. doi: 10.1210/endo-119-5-2393. [DOI] [PubMed] [Google Scholar]
  3. Antoni F. A. Receptors mediating the CRH effects of vasopressin and oxytocin. Ann N Y Acad Sci. 1987;512:195–204. doi: 10.1111/j.1749-6632.1987.tb24961.x. [DOI] [PubMed] [Google Scholar]
  4. Asano T., Ogasawara N. Uncoupling of gamma-aminobutyric acid B receptors from GTP-binding proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins. Mol Pharmacol. 1986 Mar;29(3):244–249. [PubMed] [Google Scholar]
  5. Birnbaumer L., Codina J., Mattera R., Cerione R. A., Hildebrandt J. D., Sunyer T., Rojas F. J., Caron M. G., Lefkowitz R. J., Iyengar R. Regulation of hormone receptors and adenylyl cyclases by guanine nucleotide binding N proteins. Recent Prog Horm Res. 1985;41:41–99. doi: 10.1016/b978-0-12-571141-8.50006-8. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Chan W. Y., Hruby V. J., Rockway T. W., Hlavacek J. Design of oxytocin antagonists with prolonged action: potential tocolytic agents for the treatment of preterm labor. J Pharmacol Exp Ther. 1986 Oct;239(1):84–87. [PubMed] [Google Scholar]
  8. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  9. Elands J., Barberis C., Jard S., Tribollet E., Dreifuss J. J., Bankowski K., Manning M., Sawyer W. H. 125I-labelled d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH2(9)]OVT: a selective oxytocin receptor ligand. Eur J Pharmacol. 1988 Mar 1;147(2):197–207. doi: 10.1016/0014-2999(88)90778-9. [DOI] [PubMed] [Google Scholar]
  10. Elands J., Barberis C., Jard S. [3H]-[Thr4,Gly7]OT: a highly selective ligand for central and peripheral OT receptors. Am J Physiol. 1988 Jan;254(1 Pt 1):E31–E38. doi: 10.1152/ajpendo.1988.254.1.E31. [DOI] [PubMed] [Google Scholar]
  11. Hruby V. J., Mosberg H. I., Hadley M. E., Chan W. Y., Powell A. M. Synthesis, pharmacological, conformational, and dynamic studies of the potent hormone antagonists [1-penicillamine, 4-threonine]-oxytocin and [1-penicillamine, 2-phenylalanine, 4-threonine]-oxytocin. Conformational and dynamic considerations in the design of antagonists. Int J Pept Protein Res. 1980 Nov;16(5):372–381. doi: 10.1111/j.1399-3011.1980.tb02961.x. [DOI] [PubMed] [Google Scholar]
  12. Kobilka B. K., Kobilka T. S., Daniel K., Regan J. W., Caron M. G., Lefkowitz R. J. Chimeric alpha 2-,beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science. 1988 Jun 3;240(4857):1310–1316. doi: 10.1126/science.2836950. [DOI] [PubMed] [Google Scholar]
  13. Morris B. J. Specific radioactivity of radioimmunoassay tracer determined by self-displacement: a re-evaluation. Clin Chim Acta. 1976 Nov 15;73(1):213–216. doi: 10.1016/0009-8981(76)90328-4. [DOI] [PubMed] [Google Scholar]
  14. Pearlmutter A. F., Soloff M. S. Characterization of the metal ion requirement for oxytocin-receptor interaction in rat mammary gland membranes. J Biol Chem. 1979 May 25;254(10):3899–3906. [PubMed] [Google Scholar]
  15. Soloff M. S. Regulation of oxytocin action at the receptor level. Life Sci. 1979 Oct 22;25(17):1453–1460. doi: 10.1016/0024-3205(79)90370-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES