Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Feb 1;257(3):651–656. doi: 10.1042/bj2570651

Extremely rapid endocytosis mediated by the mannose receptor of sinusoidal endothelial rat liver cells.

S Magnusson 1, T Berg 1
PMCID: PMC1135637  PMID: 2930475

Abstract

Isolated sinusoidal endothelial rat liver cells (EC) in suspension bound and internalized ovalbumin, a mannose-terminated glycoprotein, in a saturable manner. The binding and uptake were Ca2+-dependent and were effectively inhibited by alpha-methyl mannoside and yeast mannan, but not by galactose or asialoglycoproteins. This corresponds to the binding specificity described for the mannose receptor of macrophages and non-parenchymal liver cells. Binding studies indicated a surface pool of 20,000-25,000 mannose receptors per cell, with a dissociation constant of 6 x 10(-8) M. Uptake and degradation of ovalbumin by isolated EC were inhibited by weak bases and ionophores which inhibit acidification of endocytic vesicles and dissociation of receptor-ligand complexes. Cycloheximide had no effect on uptake or degradation. Degradation, but not uptake, was inhibited by leupeptin. We conclude that ovalbumin dissociates from the mannose receptors in the endosomal compartment and the receptors are recycled to the cell surface, while the ovalbumin is directed to the lysosomes for degradation. A fraction of the internalized ovalbumin was recycled intact to the cell surface and escaped degradation (retroendocytosis). The rate of internalization of ovalbumin by isolated EC was very fast, with a Ke (endocytotic rate constant) of 4.12 min-1, which corresponds to a half-life of 10 s for the surface pool of receptor-ligand complexes. To our knowledge, this is the highest Ke reported for a receptor-mediated endocytosis system.

Full text

PDF
651

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansorge S., Wiederanders B., Riemann S., Brouwer A., Knook D. L. Distribution of thiol-protein disulfide oxidoreductase, insulin-glucagon proteinase and cathepsin D in different cell types of the rat liver. Biomed Biochim Acta. 1984;43(11):1213–1221. [PubMed] [Google Scholar]
  2. Berg T., Boman D., Seglen P. O. Induction of tryptophan oxygenase in primary rat liver cell suspensions by glucocorticoid hormone. Exp Cell Res. 1972 Jun;72(2):571–574. doi: 10.1016/0014-4827(72)90034-1. [DOI] [PubMed] [Google Scholar]
  3. Berg T., Ose T., Ose L., Tolleshaug H. Intracellular degradation of 125I-labelled asialo-glycoproteins in rat hepatocytes: effect of leupeptin on subcellular distribution of asialo-fetuin. Int J Biochem. 1981;13(3):253–259. doi: 10.1016/0020-711x(81)90076-8. [DOI] [PubMed] [Google Scholar]
  4. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blomhoff R., Eskild W., Berg T. Endocytosis of formaldehyde-treated serum albumin via scavenger pathway in liver endothelial cells. Biochem J. 1984 Feb 15;218(1):81–86. doi: 10.1042/bj2180081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brouwer A., Barelds R. J., Knook D. L. Age-related changes in the endocytic capacity of rat liver Kupffer and endothelial cells. Hepatology. 1985 May-Jun;5(3):362–366. doi: 10.1002/hep.1840050304. [DOI] [PubMed] [Google Scholar]
  7. Brunda M. J., Wiltrout R. H., Holden H. T., Varesio L. Selective inhibition by monosaccharides of tumor cell cytotoxicity mediated by mouse macrophages, macrophage-like cell lines, and natural killer cells. Int J Cancer. 1983 Mar 15;31(3):373–379. doi: 10.1002/ijc.2910310319. [DOI] [PubMed] [Google Scholar]
  8. Chang K. P. Leishmania donovani-macrophage binding mediated by surface glycoproteins/antigens: characterization in vitro by a radioisotopic assay. Mol Biochem Parasitol. 1981 Nov;4(1-2):67–76. doi: 10.1016/0166-6851(81)90030-x. [DOI] [PubMed] [Google Scholar]
  9. Diment S., Stahl P. Macrophage endosomes contain proteases which degrade endocytosed protein ligands. J Biol Chem. 1985 Dec 5;260(28):15311–15317. [PubMed] [Google Scholar]
  10. Eskild W., Smedsrød B., Berg T. Receptor mediated endocytosis of formaldehyde treated albumin, yeast invertase and chondroitin sulfate in suspensions of rat liver endothelial cells. Int J Biochem. 1986;18(7):647–651. doi: 10.1016/0020-711x(86)90295-8. [DOI] [PubMed] [Google Scholar]
  11. Haltiwanger R. S., Hill R. L. The isolation of a rat alveolar macrophage lectin. J Biol Chem. 1986 Jun 5;261(16):7440–7444. [PubMed] [Google Scholar]
  12. Haltiwanger R. S., Hill R. L. The ligand binding specificity and tissue localization of a rat alveolar macrophage lectin. J Biol Chem. 1986 Nov 25;261(33):15696–15702. [PubMed] [Google Scholar]
  13. Hoppe C. A., Lee Y. C. The binding and processing of mannose-bovine serum albumin derivatives by rabbit alveolar macrophages. Effect of the sugar density. J Biol Chem. 1983 Dec 10;258(23):14193–14199. [PubMed] [Google Scholar]
  14. Hubbard A. L., Wilson G., Ashwell G., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types. J Cell Biol. 1979 Oct;83(1):47–64. doi: 10.1083/jcb.83.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karbassi A., Becker J. M., Foster J. S., Moore R. N. Enhanced killing of Candida albicans by murine macrophages treated with macrophage colony-stimulating factor: evidence for augmented expression of mannose receptors. J Immunol. 1987 Jul 15;139(2):417–421. [PubMed] [Google Scholar]
  16. Kolb-Bachofen V., Schlepper-Schäfer J., Vogell W., Kolb H. Electron microscopic evidence for an asialoglycoprotein receptor on Kupffer cells: localization of lectin-mediated endocytosis. Cell. 1982 Jul;29(3):859–866. doi: 10.1016/0092-8674(82)90447-0. [DOI] [PubMed] [Google Scholar]
  17. Kolset S. O., Tolleshaug H., Berg T. The effects of colchicine and cytochalasin B on uptake and degradation of asialo-glycoproteins in isolated rat hepatocytes. Exp Cell Res. 1979 Aug;122(1):159–167. doi: 10.1016/0014-4827(79)90570-6. [DOI] [PubMed] [Google Scholar]
  18. Largent B. L., Walton K. M., Hoppe C. A., Lee Y. C., Schnaar R. L. Carbohydrate-specific adhesion of alveolar macrophages to mannose-derivatized surfaces. J Biol Chem. 1984 Feb 10;259(3):1764–1769. [PubMed] [Google Scholar]
  19. Lennartz M. R., Wileman T. E., Stahl P. D. Isolation and characterization of a mannose-specific endocytosis receptor from rabbit alveolar macrophages. Biochem J. 1987 Aug 1;245(3):705–711. doi: 10.1042/bj2450705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Praaning-van Dalen D. P., Brouwer A., Knook D. L. Clearance capacity of rat liver Kupffer, Endothelial, and parenchymal cells. Gastroenterology. 1981 Dec;81(6):1036–1044. [PubMed] [Google Scholar]
  21. Pulford K., Souhami R. L. The surface properties and antigen-presenting function of hepatic non-parenchymal cells. Clin Exp Immunol. 1981 Dec;46(3):581–588. [PMC free article] [PubMed] [Google Scholar]
  22. Redshaw M. R., Lynch S. S. An improved method for the preparation of iodinated antigens for radioimmunoassay. J Endocrinol. 1974 Mar;60(3):527–528. doi: 10.1677/joe.0.0600527. [DOI] [PubMed] [Google Scholar]
  23. Schaudies R. P., Gorman R. M., Savage C. R., Jr, Poretz R. D. Proteolytic processing of epidermal growth factor within endosomes. Biochem Biophys Res Commun. 1987 Mar 13;143(2):710–715. doi: 10.1016/0006-291x(87)91412-4. [DOI] [PubMed] [Google Scholar]
  24. Schlesinger P. H., Doebber T. W., Mandell B. F., White R., DeSchryver C., Rodman J. S., Miller M. J., Stahl P. Plasma clearance of glycoproteins with terminal mannose and N-acetylglucosamine by liver non-parenchymal cells. Studies with beta-glucuronidase, N-acetyl-beta-D-glucosaminidase, ribonuclease B and agalacto-orosomucoid. Biochem J. 1978 Oct 15;176(1):103–109. doi: 10.1042/bj1760103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schwocho L. R., Moon R. J. Clearance and killing of Candida albicans in the perfused mouse liver. Mycopathologia. 1981 Dec 11;76(3):175–183. doi: 10.1007/BF00437198. [DOI] [PubMed] [Google Scholar]
  26. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  27. Shepherd V. L., Lee Y. C., Schlesinger P. H., Stahl P. D. L-Fucose-terminated glycoconjugates are recognized by pinocytosis receptors on macrophages. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1019–1022. doi: 10.1073/pnas.78.2.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simmons B. M., Stahl P. D., Russell J. H. Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for a chain translocation. J Biol Chem. 1986 Jun 15;261(17):7912–7920. [PubMed] [Google Scholar]
  29. Skilleter D. N., Paine A. J., Stirpe F. A comparison of the accumulation of ricin by hepatic parenchymal and non-parenchymal cells and its inhibition of protein synthesis. Biochim Biophys Acta. 1981 Nov 5;677(3-4):495–500. doi: 10.1016/0304-4165(81)90264-6. [DOI] [PubMed] [Google Scholar]
  30. Stahl P. D., Rodman J. S., Miller M. J., Schlesinger P. H. Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1399–1403. doi: 10.1073/pnas.75.3.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stahl P. D., Wileman T. E., Diment S., Shepherd V. L. Mannose-specific oligosaccharide recognition by mononuclear phagocytes. Biol Cell. 1984;51(2):215–218. doi: 10.1111/j.1768-322x.1984.tb00301.x. [DOI] [PubMed] [Google Scholar]
  32. Stahl P., Gordon S. Expression of a mannosyl-fucosyl receptor for endocytosis on cultured primary macrophages and their hybrids. J Cell Biol. 1982 Apr;93(1):49–56. doi: 10.1083/jcb.93.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stahl P., Schlesinger P. H., Sigardson E., Rodman J. S., Lee Y. C. Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell. 1980 Jan;19(1):207–215. doi: 10.1016/0092-8674(80)90402-x. [DOI] [PubMed] [Google Scholar]
  34. Steer C. J., Clarenburg R. Unique distribution of glycoprotein receptors on parenchymal and sinusoidal cells of rat liver. J Biol Chem. 1979 Jun 10;254(11):4457–4461. [PubMed] [Google Scholar]
  35. Summerfield J. A., Vergalla J., Jones E. A. Modulation of a glycoprotein recognition system on rat hepatic endothelial cells by glucose and diabetes mellitus. J Clin Invest. 1982 Jun;69(6):1337–1347. doi: 10.1172/JCI110573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tietze C., Schlesinger P., Stahl P. Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling. J Cell Biol. 1982 Feb;92(2):417–424. doi: 10.1083/jcb.92.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tolleshaug H., Berg T., Nilsson M., Norum K. R. Uptake and degradation of 125I-labelled asialo-fetuin by isolated rat hepatocytes. Biochim Biophys Acta. 1977 Aug 25;499(1):73–84. doi: 10.1016/0304-4165(77)90230-6. [DOI] [PubMed] [Google Scholar]
  38. Tolleshaug H., Berg T. The effect of leupeptin on intracellular digestion of asialofetuin in rat hepatocytes. Exp Cell Res. 1981 Jul;134(1):207–217. doi: 10.1016/0014-4827(81)90478-x. [DOI] [PubMed] [Google Scholar]
  39. Umezawa H. Protease inhibitors produced by microorganisms. Acta Biol Med Ger. 1977;36(11-12):1899–1915. [PubMed] [Google Scholar]
  40. Warr G. A. A macrophage receptor for (mannose/glucosamine)-glycoproteins of potential importance in phagocytic activity. Biochem Biophys Res Commun. 1980 Apr 14;93(3):737–745. doi: 10.1016/0006-291x(80)91139-0. [DOI] [PubMed] [Google Scholar]
  41. Weigel P. H., Oka J. A. Recycling of the hepatic asialoglycoprotein receptor in isolated rat hepatocytes. Receptor-ligand complexes in an intracellular slowly dissociating pool return to the cell surface prior to dissociation. J Biol Chem. 1984 Jan 25;259(2):1150–1154. [PubMed] [Google Scholar]
  42. Weir D. M., Ogmundsdóttir H. M. Non-specific recognition mechanisms by mononuclear phagocytes. Clin Exp Immunol. 1977 Nov;30(2):323–329. [PMC free article] [PubMed] [Google Scholar]
  43. Wileman T. E., Lennartz M. R., Stahl P. D. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2501–2505. doi: 10.1073/pnas.83.8.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wileman T., Boshans R. L., Schlesinger P., Stahl P. Monensin inhibits recycling of macrophage mannose-glycoprotein receptors and ligand delivery to lysosomes. Biochem J. 1984 Jun 15;220(3):665–675. doi: 10.1042/bj2200665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wiley H. S., Cunningham D. D. The endocytotic rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J Biol Chem. 1982 Apr 25;257(8):4222–4229. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES