Abstract
The kinetics of the photochemical changes of bilirubin were studied at a constant concentration of bilirubin bound either to the first class or to the second class of binding sites of the human serum albumin molecule. The more the bilirubin binds to the first class of binding sites in the human serum albumin molecule, the more readily geometric photoequilibrium to give (ZE)-bilirubin takes place. The more the bilirubin binds to the second class of binding sites or allosterically transformed binding sites induced by added SDS, the more readily structural photoisomerization, i.e. the formation of (EZ)-cyclobilirubin, takes place. When the serum bilirubin concentration is at low, safe, values bilirubin binds exclusively to the first class of binding sites and serves as an antioxidant [Onishi, Yamakawa & Ogawa (1971) Perinatology 1, 373-379]; at these concentrations human serum albumin protects bilirubin from irreversible photodegradation by only allowing readily reversible geometric photoisomerization. As the serum bilirubin concentration increases to high, and potentially dangerous, values, bilirubin binds to the second class of binding sites, and under these conditions human serum albumin seems to promote the photocyclization of bilirubin. During irradiation human serum albumin seems to act by retaining low, useful, concentrations of bilirubin while facilitating irreversible photoisomerization of excess bilirubin.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blauer G., King T. E. Interactions of bilirubin with bovine serum albumin in aqueous solution. J Biol Chem. 1970 Jan 25;245(2):372–381. [PubMed] [Google Scholar]
- Brodersen R. Bilirubin. Solubility and interaction with albumin and phospholipid. J Biol Chem. 1979 Apr 10;254(7):2364–2369. [PubMed] [Google Scholar]
- Brodersen R. Binding of bilirubin to albumin. CRC Crit Rev Clin Lab Sci. 1980 Jan;11(4):305–399. [PubMed] [Google Scholar]
- Corchs J. L., Rodriguez Garay E. A. In vitro studies on bilirubin transport by the small intestine of the rat. Experientia. 1970 Aug 15;26(8):858–859. doi: 10.1007/BF02114222. [DOI] [PubMed] [Google Scholar]
- Frandsen P. C., Brodersen R. Bilirubin/rat serum albumin interaction. Acta Chem Scand B. 1986;40(1):55–59. doi: 10.3891/acta.chem.scand.40b-0055. [DOI] [PubMed] [Google Scholar]
- GILBERTSEN A. S., BOSSENMAIER I., CARDINAL R. Enterohepatic circulation of unconjugated bilirubin in man. Nature. 1962 Oct 13;196:141–142. doi: 10.1038/196141a0. [DOI] [PubMed] [Google Scholar]
- Itoh S., Onishi S. Kinetic study of the photochemical changes of (ZZ)-bilirubin IX alpha bound to human serum albumin. Demonstration of (EZ)-bilirubin IX alpha as an intermediate in photochemical changes from (ZZ)-bilirubin IX alpha to (EZ)-cyclobilirubin IX alpha. Biochem J. 1985 Feb 15;226(1):251–258. doi: 10.1042/bj2260251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen J. Binding of bilirubin to human serum albumin - determination of the dissociation constants. FEBS Lett. 1969 Oct 21;5(2):112–114. doi: 10.1016/0014-5793(69)80307-8. [DOI] [PubMed] [Google Scholar]
- Jacobsen J., Brodersen R. Albumin-bilirubin binding mechanism. J Biol Chem. 1983 May 25;258(10):6319–6326. [PubMed] [Google Scholar]
- LESTER R., OSTROW J. D., SCHMID R. Enterohepatic circulation of bilirubin. Nature. 1961 Oct 28;192:372–372. doi: 10.1038/192372a0. [DOI] [PubMed] [Google Scholar]
- Lamola A. A., Braslavsky S. E., Schaffner K., Lightner D. A. Spectral study of the photochemistry of dipyrrole models for bilirubin bound to human serum albumin. Photochem Photobiol. 1983 Mar;37(3):263–270. doi: 10.1111/j.1751-1097.1983.tb04471.x. [DOI] [PubMed] [Google Scholar]
- Malhotra V., Greenberg J. W., Dunn L. L., Ennever J. F. Fatty acid enhancement of the quantum yield for the formation of lumirubin from bilirubin bound to human albumin. Pediatr Res. 1987 Jun;21(6):530–533. doi: 10.1203/00006450-198706000-00003. [DOI] [PubMed] [Google Scholar]
- Meloun B., Morávek L., Kostka V. Complete amino acid sequence of human serum albumin. FEBS Lett. 1975 Oct 15;58(1):134–137. doi: 10.1016/0014-5793(75)80242-0. [DOI] [PubMed] [Google Scholar]
- Odell G. B. Influence of binding on the toxicity of bilirubin. Ann N Y Acad Sci. 1973 Nov 26;226:225–237. doi: 10.1111/j.1749-6632.1973.tb20484.x. [DOI] [PubMed] [Google Scholar]
- Onishi S., Isobe K., Itoh S., Kawade N., Sugiyama S. Demonstration of a geometric isomer of bilirubin-IX alpha in the serum of a hyperbilirubinaemic newborn infant and the mechanism of jaundice phototherapy. Biochem J. 1980 Sep 15;190(3):533–536. doi: 10.1042/bj1900533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onishi S., Isobe K., Itoh S., Manabe M., Sasaki K., Fukuzaki R., Yamakawa T. Metabolism of bilirubin and its photoisomers in newborn infants during phototherapy. J Biochem. 1986 Sep;100(3):789–795. doi: 10.1093/oxfordjournals.jbchem.a121772. [DOI] [PubMed] [Google Scholar]
- Onishi S., Itoh S., Yamakawa T., Isobe K., Manabe M., Toyota S., Imai T. Comparison of kinetic study of the photochemical changes of (ZZ)-bilirubin IX alpha bound to human serum albumin with that bound to rat serum albumin. Biochem J. 1985 Sep 15;230(3):561–567. doi: 10.1042/bj2300561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onishi S., Kawade N., Itoh S., Isobe K., Sugiyama S., Hashimoto T., Narita H. Kinetics of biliary excretion of the main two bilirubin photoproducts after injection into Gunn rats. Biochem J. 1981 Jul 15;198(1):107–112. doi: 10.1042/bj1980107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onishi S., Ogino T., Yokoyama T., Isobe K., Itoh S., Yamakawa T., Hashimoto T. Biliary and urinary excretion rates and serum concentration changes of four bilirubin photoproducts in Gunn rats during total darkness and low or high illumination. Biochem J. 1984 Aug 1;221(3):717–721. doi: 10.1042/bj2210717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent T. D., Jagodzinski L. L., Yang M., Bonner J. Fine structure and evolution of the rat serum albumin gene. Mol Cell Biol. 1981 Oct;1(10):871–883. doi: 10.1128/mcb.1.10.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent T. D., Yang M., Bonner J. Nucleotide sequence of cloned rat serum albumin messenger RNA. Proc Natl Acad Sci U S A. 1981 Jan;78(1):243–246. doi: 10.1073/pnas.78.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocker R., Glazer A. N., Ames B. N. Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5918–5922. doi: 10.1073/pnas.84.16.5918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987 Feb 27;235(4792):1043–1046. doi: 10.1126/science.3029864. [DOI] [PubMed] [Google Scholar]
- Stoll M. S., Zenone E. A., Ostrow J. D. Excretion of administered and endogenous photobilirubins in the bile of the jaundice gunn rat. J Clin Invest. 1981 Jul;68(1):134–141. doi: 10.1172/JCI110229. [DOI] [PMC free article] [PubMed] [Google Scholar]
