Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Feb 1;257(3):751–758. doi: 10.1042/bj2570751

Na+/H+ exchange modulates the production of leukotriene B4 by human neutrophils.

M Osaki 1, H Sumimoto 1, K Takeshige 1, E J Cragoe Jr 1, Y Hori 1, S Minakami 1
PMCID: PMC1135652  PMID: 2539095

Abstract

Human neutrophils produce various compounds of the 5-lipoxygenase pathway, including (5S)-hydroxyeicosatetraenoic acid, leukotriene B4, its 6-trans isomers and omega-oxidation metabolites of LTB4, when the cells are stimulated with the Ca2+ ionophore A23187. The elevation in the extracellular pH (pHo) facilitated the cytoplasmic alkalinization induced by the ionophore as determined fluorometrically using 2',7'-bis(carboxyethyl)carboxyfluorescein and enhanced the production of all the 5-lipoxygenase metabolites. The production decreased when the alkalinization was blocked by the decrease in the pHo, the removal of the extracellular Na+ or the addition of specific inhibitors of the Na+/H+ exchange, such as 5-(NN-hexamethylene)amiloride, 5-(N-methyl-N-isobutyl)amiloride and 5-(N-ethyl-N-isopropyl)amiloride. The alkalinization of the cytoplasm with methylamine completely restored the production suppressed by the removal of Na+ from the medium. These findings suggest that the change in the cytoplasmic pH (pHi) mediated by the Na+/H+ exchange regulates the production of the lipoxygenase metabolites. The site of the metabolism controlled by the pHi change seemed to be the 5-lipoxygenase, because the production of all the metabolites decreased in parallel and the release of [3H]arachidonic acid from the neutrophils in response to the ionophore was not affected by the pHi change. Furthermore, the production of the 5-lipoxygenase metabolites stimulated by A23187 with or without exogenous arachidonic acid showed a similar pHo-dependence and the production induced by N-formylmethionyl-leucylphenylalanine (chemotactic peptide) with exogenous arachidonic acid also decreased when the cytoplasmic alkalinization was inhibited.

Full text

PDF
751

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharony D., Stein R. L. Kinetic mechanism of guinea pig neutrophil 5-lipoxygenase. J Biol Chem. 1986 Sep 5;261(25):11512–11519. [PubMed] [Google Scholar]
  2. Alonso F., Henson P. M., Leslie C. C. A cytosolic phospholipase in human neutrophils that hydrolyzes arachidonoyl-containing phosphatidylcholine. Biochim Biophys Acta. 1986 Sep 12;878(2):273–280. doi: 10.1016/0005-2760(86)90156-6. [DOI] [PubMed] [Google Scholar]
  3. Borgeat P., Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci U S A. 1979 May;76(5):2148–2152. doi: 10.1073/pnas.76.5.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brain S., Camp R., Dowd P., Black A. K., Greaves M. The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J Invest Dermatol. 1984 Jul;83(1):70–73. doi: 10.1111/1523-1747.ep12261712. [DOI] [PubMed] [Google Scholar]
  5. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  6. Camp R. D., Woollard P. M., Mallet A. I., Fincham N. J., Ford-Hutchinson A. W., Bray M. A. Neutrophil aggregating and chemokinetic properties of a 5,12,20-trihydroxy-6,8,10,14-eicosatetraenoic acid isolated from human leukocytes. Prostaglandins. 1982 May;23(5):631–641. doi: 10.1016/s0090-6980(82)80003-8. [DOI] [PubMed] [Google Scholar]
  7. Clancy R. M., Dahinden C. A., Hugli T. E. Arachidonate metabolism by human polymorphonuclear leukocytes stimulated by N-formyl-Met-Leu-Phe or complement component C5a is independent of phospholipase activation. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7200–7204. doi: 10.1073/pnas.80.23.7200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cragoe E. J., Jr, Woltersdorf O. W., Jr, Bicking J. B., Kwong S. F., Jones J. H. Pyrazine diuretics. II. N-amidino-3-amino-5-substituted 6-halopyrazinecarboxamides. J Med Chem. 1967 Jan;10(1):66–75. doi: 10.1021/jm00313a014. [DOI] [PubMed] [Google Scholar]
  9. Dewald B., Baggiolini M. Platelet-activating factor as a stimulus of exocytosis in human neutrophils. Biochim Biophys Acta. 1986 Aug 29;888(1):42–48. doi: 10.1016/0167-4889(86)90069-8. [DOI] [PubMed] [Google Scholar]
  10. Feinmark S. J., Lindgren J. A., Claesson H. E., Malmsten C., Samuelsson B. Stimulation of human leukocyte degranulation by leukotriene B4 and its omega-oxidized metabolites. FEBS Lett. 1981 Dec 21;136(1):141–144. doi: 10.1016/0014-5793(81)81233-1. [DOI] [PubMed] [Google Scholar]
  11. Frelin C., Vigne P., Ladoux A., Lazdunski M. The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem. 1988 May 16;174(1):3–14. doi: 10.1111/j.1432-1033.1988.tb14055.x. [DOI] [PubMed] [Google Scholar]
  12. Grinstein S., Furuya W. Cytoplasmic pH regulation in activated human neutrophils: effects of adenosine and pertussis toxin on Na+/H+ exchange and metabolic acidification. Biochim Biophys Acta. 1986 Dec 19;889(3):301–309. doi: 10.1016/0167-4889(86)90192-8. [DOI] [PubMed] [Google Scholar]
  13. Hansson G., Lindgren J. A., Dahlén S. E., Hedqvist P., Samuelsson B. Identification and biological activity of novel omega-oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Lett. 1981 Jul 20;130(1):107–112. doi: 10.1016/0014-5793(81)80676-x. [DOI] [PubMed] [Google Scholar]
  14. Jubiz W., Rådmark O., Malmsten C., Hansson G., Lindgren J. A., Palmblad J., Udén A. M., Samuelsson B. A novel leukotriene produced by stimulation of leukocytes with formylmethionylleucylphenylalanine. J Biol Chem. 1982 Jun 10;257(11):6106–6110. [PubMed] [Google Scholar]
  15. Liles W. C., Meier K. E., Henderson W. R. Phorbol myristate acetate and the calcium ionophore A23187 synergistically induce release of LTB4 by human neutrophils: involvement of protein kinase C activation in regulation of the 5-lipoxygenase pathway. J Immunol. 1987 May 15;138(10):3396–3402. [PubMed] [Google Scholar]
  16. McIntyre T. M., Reinhold S. L., Prescott S. M., Zimmerman G. A. Protein kinase C activity appears to be required for the synthesis of platelet-activating factor and leukotriene B4 by human neutrophils. J Biol Chem. 1987 Nov 15;262(32):15370–15376. [PubMed] [Google Scholar]
  17. O'Flaherty J. T., Wykle R. L., Redman J., Samuel M., Thomas M. Metabolism of 5-hydroxyicosatetraenoate by human neutrophils: production of a novel omega-oxidized derivative. J Immunol. 1986 Nov 15;137(10):3277–3283. [PubMed] [Google Scholar]
  18. Ochi K., Yoshimoto T., Yamamoto S., Taniguchi K., Miyamoto T. Arachidonate 5-lipoxygenase of guinea pig peritoneal polymorphonuclear leukocytes. Activation by adenosine 5'-triphosphate. J Biol Chem. 1983 May 10;258(9):5754–5758. [PubMed] [Google Scholar]
  19. Powell W. S. Properties of leukotriene B4 20-hydroxylase from polymorphonuclear leukocytes. J Biol Chem. 1984 Mar 10;259(5):3082–3089. [PubMed] [Google Scholar]
  20. Puustinen T., Scheffer M. M., Samuelsson B. Endogenously generated 5-hydroperoxyeicosatetraenoic acid is the preferred substrate for human leukocyte leukotriene A4 synthase activity. FEBS Lett. 1987 Jun 15;217(2):265–268. doi: 10.1016/0014-5793(87)80675-0. [DOI] [PubMed] [Google Scholar]
  21. Ringertz B., Palmblad J., Rådmark O., Malmsten C. Leukotriene-induced neutrophil aggregation in vitro. FEBS Lett. 1982 Oct 18;147(2):180–182. doi: 10.1016/0014-5793(82)81037-5. [DOI] [PubMed] [Google Scholar]
  22. Rouzer C. A., Matsumoto T., Samuelsson B. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci U S A. 1986 Feb;83(4):857–861. doi: 10.1073/pnas.83.4.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rouzer C. A., Samuelsson B. On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6040–6044. doi: 10.1073/pnas.82.18.6040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ruzicka T., Simmet T., Peskar B. A., Braun-Falco O. Leukotrienes in skin of atopic dermatitis. Lancet. 1984 Jan 28;1(8370):222–223. doi: 10.1016/s0140-6736(84)92142-1. [DOI] [PubMed] [Google Scholar]
  25. Rådmark O., Shimizu T., Jörnvall H., Samuelsson B. Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J Biol Chem. 1984 Oct 25;259(20):12339–12345. [PubMed] [Google Scholar]
  26. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
  27. Seifter J. L., Aronson P. S. Properties and physiologic roles of the plasma membrane sodium-hydrogen exchanger. J Clin Invest. 1986 Oct;78(4):859–864. doi: 10.1172/JCI112671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shak S., Goldstein I. M. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. J Biol Chem. 1984 Aug 25;259(16):10181–10187. [PubMed] [Google Scholar]
  29. Shimizu T., Izumi T., Seyama Y., Tadokoro K., Rådmark O., Samuelsson B. Characterization of leukotriene A4 synthase from murine mast cells: evidence for its identity to arachidonate 5-lipoxygenase. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4175–4179. doi: 10.1073/pnas.83.12.4175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Simchowitz L., Cragoe E. J., Jr Inhibition of chemotactic factor-activated Na+/H+ exchange in human neutrophils by analogues of amiloride: structure-activity relationships in the amiloride series. Mol Pharmacol. 1986 Aug;30(2):112–120. [PubMed] [Google Scholar]
  31. Simchowitz L., Cragoe E. J., Jr Regulation of human neutrophil chemotaxis by intracellular pH. J Biol Chem. 1986 May 15;261(14):6492–6500. [PubMed] [Google Scholar]
  32. Simchowitz L. Intracellular pH modulates the generation of superoxide radicals by human neutrophils. J Clin Invest. 1985 Sep;76(3):1079–1089. doi: 10.1172/JCI112061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Soberman R. J., Harper T. W., Betteridge D., Lewis R. A., Austen K. F. Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid omega-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes. J Biol Chem. 1985 Apr 10;260(7):4508–4515. [PubMed] [Google Scholar]
  34. Sumimoto H., Satoh M., Takeshige K., Cragoe E. J., Jr, Minakami S. Cytoplasmic pH change induced by leukotriene B4 in human neutrophils. Biochim Biophys Acta. 1988 Jun 8;970(1):31–38. doi: 10.1016/0167-4889(88)90219-4. [DOI] [PubMed] [Google Scholar]
  35. Sumimoto H., Takeshige K., Minakami S. NAD+-dependent conversion of 20-OH-LTB4 to 20-COOH-LTB4 by a cell-free system of human polymorphonuclear leukocytes. Biochem Biophys Res Commun. 1985 Nov 15;132(3):864–870. doi: 10.1016/0006-291x(85)91887-x. [DOI] [PubMed] [Google Scholar]
  36. Sumimoto H., Takeshige K., Minakami S. Superoxide production of human polymorphonuclear leukocytes stimulated by leukotriene B4. Biochim Biophys Acta. 1984 Apr 16;803(4):271–277. doi: 10.1016/0167-4889(84)90117-4. [DOI] [PubMed] [Google Scholar]
  37. Sumimoto H., Takeshige K., Sakai H., Minakami S. A cell-free preparation of human neutrophils catalyzing NADPH-dependent conversion of leukotriene B4. Biochem Biophys Res Commun. 1984 Dec 14;125(2):615–621. doi: 10.1016/0006-291x(84)90583-7. [DOI] [PubMed] [Google Scholar]
  38. Sumimoto J., Takeshige K., Minakami S. Characterization of human neutrophil leukotriene B4 omega-hydroxylase as a system involving a unique cytochrome P-450 and NADPH-cytochrome P-450 reductase. Eur J Biochem. 1988 Mar 1;172(2):315–324. doi: 10.1111/j.1432-1033.1988.tb13889.x. [DOI] [PubMed] [Google Scholar]
  39. Sweatt J. D., Connolly T. M., Cragoe E. J., Limbird L. E. Evidence that Na+/H+ exchange regulates receptor-mediated phospholipase A2 activation in human platelets. J Biol Chem. 1986 Jul 5;261(19):8667–8673. [PubMed] [Google Scholar]
  40. Sweatt J. D., Johnson S. L., Cragoe E. J., Limbird L. E. Inhibitors of Na+/H+ exchange block stimulus-provoked arachidonic acid release in human platelets. Selective effects on platelet activation by epinephrine, ADP, and lower concentrations of thrombin. J Biol Chem. 1985 Oct 25;260(24):12910–12919. [PubMed] [Google Scholar]
  41. Takenawa T., Homma Y., Nagai Y. Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide- or Ca2+ ionophore A23187-stimulated guinea pig neutrophils. J Immunol. 1983 Jun;130(6):2849–2855. [PubMed] [Google Scholar]
  42. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  43. Ueda N., Kaneko S., Yoshimoto T., Yamamoto S. Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids. J Biol Chem. 1986 Jun 15;261(17):7982–7988. [PubMed] [Google Scholar]
  44. Wiseman J. S., Skoog M. T., Nichols J. S., Harrison B. L. Kinetics of leukotriene A4 synthesis by 5-lipoxygenase from rat polymorphonuclear leukocytes. Biochemistry. 1987 Sep 8;26(18):5684–5689. doi: 10.1021/bi00392a016. [DOI] [PubMed] [Google Scholar]
  45. Yamaoka A., Sumimoto H., Takeshige K., Itoh T., Isobe R., Yoshitake J., Minakami S. Inhibition of leukotriene formation in human leukocytes by halothane. Biochim Biophys Acta. 1987 Apr 24;918(3):284–292. [PubMed] [Google Scholar]
  46. Zavoico G. B., Cragoe E. J., Jr, Feinstein M. B. Regulation of intracellular pH in human platelets. Effects of thrombin, A23187, and ionomycin and evidence for activation of Na+/H+ exchange and its inhibition by amiloride analogs. J Biol Chem. 1986 Oct 5;261(28):13160–13167. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES