Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Feb 1;257(3):875–884. doi: 10.1042/bj2570875

Endocytosis of hyaluronic acid by rat liver endothelial cells. Evidence for receptor recycling.

C T McGary 1, R H Raja 1, P H Weigel 1
PMCID: PMC1135669  PMID: 2930491

Abstract

Hyaluronic acid (HA) is cleared from the blood by liver endothelial cells through receptor-mediated endocytosis [Eriksson, Fraser, Laurent, Pertoft & Smedsrod (1983) Exp. Cell Res. 144, 223-238]. We have measured the capacity of cultured rat liver endothelial cells to endocytose and degrade 125I-HA (Mr approximately 44,000) at 37 degrees C. Endocytosis was linear for 3 h and then reached a plateau. The rate of endocytosis was concentration-dependent and reached a maximum of 250 molecules/s per cell. Endocytosis of 125I-HA was inhibited more than 92% by a 150-fold excess of non-radiolabelled HA. HA, chondroitin sulphate and heparin effectively competed for endocytosis of 125I-HA, whereas glucuronic acid, N-acetylglucosamine, DNA, RNA, polygalacturonic acid and dextran did not compete. In the absence of cycloheximide, endothelial cells processed 13 times more 125I-HA in 6 h than their total (cell-surface and intracellular) specific HA-binding capacity. This result was not due to degradation and rapid replacement of receptors, because, even in the presence of cycloheximide, these cells processed 6 times more HA than their total receptor content in 6 h. Also, in the presence of cycloheximide, no decrease in 125I-HA-binding capacity was seen in cells processing or not processing HA for 6 h, indicating that receptors are not degraded after the endocytosis of HA. During endocytosis of HA at 37 degrees C, at least 65% of the intracellular HA receptors became occupied with HA within 30 min. This indicates that the intracellular HA receptors (75% of the total) function during continuous endocytosis. Hyperosmolarity inhibits endocytosis and receptor recycling in the asialoglycoprotein and low-density-lipoprotein receptor systems by disrupting the coated-pit pathway [Heuser & Anderson (1987) J. Cell Biol. 105, 230a; Oka & Weigel (1988) J. Cell. Biochem. 36, 169-183]. Hyperosmolarity inhibited 125I-HA endocytosis in liver endothelial cells by more than 90%, suggesting use of a coated-pit pathway by this HA receptor. We conclude that liver endothelial cell HA receptors are recycled during the continuous endocytosis and processing of HA.

Full text

PDF
875

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlgren T., Jarstrand C. Hyaluronic acid enhances phagocytosis of human monocytes in vitro. J Clin Immunol. 1984 May;4(3):246–249. doi: 10.1007/BF00914973. [DOI] [PubMed] [Google Scholar]
  2. Amiel D., Frey C., Woo S. L., Harwood F., Akeson W. Value of hyaluronic acid in the prevention of contracture formation. Clin Orthop Relat Res. 1985 Jun;(196):306–311. [PubMed] [Google Scholar]
  3. Balazs E. A., Freeman M. I., Klöti R., Meyer-Schwickerath G., Regnault F., Sweeney D. B. Hyaluronic acid and replacement of vitreous and aqueous humor. Mod Probl Ophthalmol. 1972;10:3–21. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Braell W. A., Schlossman D. M., Schmid S. L., Rothman J. E. Dissociation of clathrin coats coupled to the hydrolysis of ATP: role of an uncoating ATPase. J Cell Biol. 1984 Aug;99(2):734–741. doi: 10.1083/jcb.99.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter G., Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205. [DOI] [PubMed] [Google Scholar]
  7. Chang N. S., Boackle R. J., Armand G. Hyaluronic acid-complement interactions--I. Reversible heat-induced anticomplementary activity. Mol Immunol. 1985 Apr;22(4):391–397. doi: 10.1016/0161-5890(85)90123-3. [DOI] [PubMed] [Google Scholar]
  8. Clarke B. L., Oka J. A., Weigel P. H. Degradation of asialoglycoproteins mediated by the galactosyl receptor system in isolated hepatocytes. Evidence for two parallel pathways. J Biol Chem. 1987 Dec 25;262(36):17384–17392. [PubMed] [Google Scholar]
  9. Engström-Laurent A., Feltelius N., Hällgren R., Wasteson A. Raised serum hyaluronate levels in scleroderma: an effect of growth factor induced activation of connective tissue cells? Ann Rheum Dis. 1985 Sep;44(9):614–620. doi: 10.1136/ard.44.9.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eriksson S., Fraser J. R., Laurent T. C., Pertoft H., Smedsrød B. Endothelial cells are a site of uptake and degradation of hyaluronic acid in the liver. Exp Cell Res. 1983 Mar;144(1):223–228. doi: 10.1016/0014-4827(83)90458-5. [DOI] [PubMed] [Google Scholar]
  11. Fraser J. R., Alcorn D., Laurent T. C., Robinson A. D., Ryan G. B. Uptake of circulating hyaluronic acid by the rat liver. Cellular localization in situ. Cell Tissue Res. 1985;242(3):505–510. doi: 10.1007/BF00225415. [DOI] [PubMed] [Google Scholar]
  12. Fraser J. R., Appelgren L. E., Laurent T. C. Tissue uptake of circulating hyaluronic acid. A whole body autoradiographic study. Cell Tissue Res. 1983;233(2):285–293. doi: 10.1007/BF00238296. [DOI] [PubMed] [Google Scholar]
  13. Fraser J. R., Laurent T. C., Pertoft H., Baxter E. Plasma clearance, tissue distribution and metabolism of hyaluronic acid injected intravenously in the rabbit. Biochem J. 1981 Nov 15;200(2):415–424. doi: 10.1042/bj2000415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  15. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  16. Hesch R. D., Brunner G., Söling H. D. Conversion of thyroxine (T4) and triiodothyronine (T3) and the subcellular localisation of the converting enzyme. Clin Chim Acta. 1975 Mar 10;59(2):209–213. doi: 10.1016/0009-8981(75)90031-5. [DOI] [PubMed] [Google Scholar]
  17. Håkansson L., Hällgren R., Venge P. Regulation of granulocyte function by hyaluronic acid. In vitro and in vivo effects on phagocytosis, locomotion, and metabolism. J Clin Invest. 1980 Aug;66(2):298–305. doi: 10.1172/JCI109857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kimata K., Honma Y., Okayama M., Oguri K., Hozumi M., Suzuki S. Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential. Cancer Res. 1983 Mar;43(3):1347–1354. [PubMed] [Google Scholar]
  19. Knudson W., Biswas C., Toole B. P. Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6767–6771. doi: 10.1073/pnas.81.21.6767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  21. Laurent T. C., Dahl I. M., Dahl L. B., Engström-Laurent A., Eriksson S., Fraser J. R., Granath K. A., Laurent C., Laurent U. B., Lilja K. The catabolic fate of hyaluronic acid. Connect Tissue Res. 1986;15(1-2):33–41. doi: 10.3109/03008208609001971. [DOI] [PubMed] [Google Scholar]
  22. Laurent T. C., Fraser J. R., Pertoft H., Smedsrød B. Binding of hyaluronate and chondroitin sulphate to liver endothelial cells. Biochem J. 1986 Mar 15;234(3):653–658. doi: 10.1042/bj2340653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McAbee D. D., Weigel P. H. ATP depletion causes a reversible redistribution and inactivation of a subpopulation of galactosyl receptors in isolated rat hepatocytes. J Biol Chem. 1987 Feb 15;262(5):1942–1945. [PubMed] [Google Scholar]
  24. McAbee D. D., Weigel P. H. ATP-dependent inactivation and reactivation of constitutively recycling galactosyl receptors in isolated rat hepatocytes. Biochemistry. 1988 Mar 22;27(6):2061–2069. doi: 10.1021/bi00406a037. [DOI] [PubMed] [Google Scholar]
  25. Moore M. S., Mahaffey D. T., Brodsky F. M., Anderson R. G. Assembly of clathrin-coated pits onto purified plasma membranes. Science. 1987 May 1;236(4801):558–563. doi: 10.1126/science.2883727. [DOI] [PubMed] [Google Scholar]
  26. Namiki O., Toyoshima H., Morisaki N. Therapeutic effect of intra-articular injection of high molecular weight hyaluronic acid on osteoarthritis of the knee. Int J Clin Pharmacol Ther Toxicol. 1982 Nov;20(11):501–507. [PubMed] [Google Scholar]
  27. Oka J. A., Weigel P. H. Effects of hyperosmolarity on ligand processing and receptor recycling in the hepatic galactosyl receptor system. J Cell Biochem. 1988 Feb;36(2):169–183. doi: 10.1002/jcb.240360208. [DOI] [PubMed] [Google Scholar]
  28. Raja R. H., LeBoeuf R. D., Stone G. W., Weigel P. H. Preparation of alkylamine and 125I-radiolabeled derivatives of hyaluronic acid uniquely modified at the reducing end. Anal Biochem. 1984 May 15;139(1):168–177. doi: 10.1016/0003-2697(84)90402-0. [DOI] [PubMed] [Google Scholar]
  29. Raja R. H., McGary C. T., Weigel P. H. Affinity and distribution of surface and intracellular hyaluronic acid receptors in isolated rat liver endothelial cells. J Biol Chem. 1988 Nov 15;263(32):16661–16668. [PubMed] [Google Scholar]
  30. SCOTT J. E. Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Methods Biochem Anal. 1960;8:145–197. doi: 10.1002/9780470110249.ch4. [DOI] [PubMed] [Google Scholar]
  31. Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
  32. Smedsrød B., Pertoft H., Eggertsen G., Sundström C. Functional and morphological characterization of cultures of Kupffer cells and liver endothelial cells prepared by means of density separation in Percoll, and selective substrate adherence. Cell Tissue Res. 1985;241(3):639–649. doi: 10.1007/BF00214586. [DOI] [PubMed] [Google Scholar]
  33. Smedsrød B., Pertoft H., Eriksson S., Fraser J. R., Laurent T. C. Studies in vitro on the uptake and degradation of sodium hyaluronate in rat liver endothelial cells. Biochem J. 1984 Nov 1;223(3):617–626. doi: 10.1042/bj2230617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smedsrød B., Pertoft H. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J Leukoc Biol. 1985 Aug;38(2):213–230. doi: 10.1002/jlb.38.2.213. [DOI] [PubMed] [Google Scholar]
  35. Solari R., Kraehenbuhl J. P. Biosynthesis of the IgA antibody receptor: a model for the transepithelial sorting of a membrane glycoprotein. Cell. 1984 Jan;36(1):61–71. doi: 10.1016/0092-8674(84)90074-6. [DOI] [PubMed] [Google Scholar]
  36. St Onge R., Weiss C., Denlinger J. L., Balazs E. A. A preliminary assessment of Na-hyaluronate injection into "no man's land" for primary flexor tendon repair. Clin Orthop Relat Res. 1980 Jan-Feb;(146):269–275. [PubMed] [Google Scholar]
  37. Stahl P. D., Wileman T. E., Diment S., Shepherd V. L. Mannose-specific oligosaccharide recognition by mononuclear phagocytes. Biol Cell. 1984;51(2):215–218. doi: 10.1111/j.1768-322x.1984.tb00301.x. [DOI] [PubMed] [Google Scholar]
  38. Steer C. J., Ashwell G. Studies on a mammalian hepatic binding protein specific for asialoglycoproteins. Evidence for receptor recycling in isolated rat hepatocytes. J Biol Chem. 1980 Apr 10;255(7):3008–3013. [PubMed] [Google Scholar]
  39. Strobel J. L., Baynes J. W., Thorpe S. R. 125I-glycoconjugate labels for identifying sites of protein catabolism in vivo: effect of structure and chemistry of coupling to protein on label entrapment in cells after protein degradation. Arch Biochem Biophys. 1985 Aug 1;240(2):635–645. doi: 10.1016/0003-9861(85)90071-2. [DOI] [PubMed] [Google Scholar]
  40. Toole B. P., Gross J. The extracellular matrix of the regenerating newt limb: synthesis and removal of hyaluronate prior to differentiation. Dev Biol. 1971 May;25(1):57–77. doi: 10.1016/0012-1606(71)90019-4. [DOI] [PubMed] [Google Scholar]
  41. Underhill C. B., Toole B. P. Receptors for hyaluronate on the surface of parent and virus-transformed cell lines: binding and aggregation studies. Exp Cell Res. 1981 Feb;131(2):419–423. doi: 10.1016/0014-4827(81)90248-2. [DOI] [PubMed] [Google Scholar]
  42. Weigel P. H. Characterization of the asialoglycoprotein receptor on isolated rat hepatocytes. J Biol Chem. 1980 Jul 10;255(13):6111–6120. [PubMed] [Google Scholar]
  43. Weigel P. H., Fuller G. M., LeBoeuf R. D. A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol. 1986 Mar 21;119(2):219–234. doi: 10.1016/s0022-5193(86)80076-5. [DOI] [PubMed] [Google Scholar]
  44. Weigel P. H., Oka J. A. Endocytosis and degradation mediated by the asialoglycoprotein receptor in isolated rat hepatocytes. J Biol Chem. 1982 Feb 10;257(3):1201–1207. [PubMed] [Google Scholar]
  45. Weigel P. H., Oka J. A. The large intracellular pool of asialoglycoprotein receptors functions during the endocytosis of asialoglycoproteins by isolated rat hepatocytes. J Biol Chem. 1983 Apr 25;258(8):5095–5102. [PubMed] [Google Scholar]
  46. Weigel P. H., Ray D. A., Oka J. A. Quantitation of intracellular membrane-bound enzymes and receptors in digitonin-permeabilized cells. Anal Biochem. 1983 Sep;133(2):437–449. doi: 10.1016/0003-2697(83)90106-9. [DOI] [PubMed] [Google Scholar]
  47. West D. C., Hampson I. N., Arnold F., Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science. 1985 Jun 14;228(4705):1324–1326. doi: 10.1126/science.2408340. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES