Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Aug 1;309(Pt 3):773–779. doi: 10.1042/bj3090773

Sequence variation of a novel heptahelical leucocyte receptor through alternative transcript formation.

L Barella 1, M Loetscher 1, A Tobler 1, M Baggiolini 1, B Moser 1
PMCID: PMC1135699  PMID: 7639692

Abstract

Chemoattractants, including chemokines such as interleukin 8 (IL-8) and related proteins, activate leucocytes via seven-transmembrane-domain G-protein-coupled receptors. A cDNA for a novel receptor of this kind consisting of 327 amino acids was isolated from a human blood monocyte cDNA library. The polypeptide, termed monocyte-derived receptor 15 (MDR15), is an alternative form of the Burkitt's lymphoma receptor 1 (BLR1) encoded by a human Burkitt's lymphoma cDNA [Dobner, Wolf, Emrich and Lipp (1992) Eur. J. Immunol. 22, 2795-2799]. MDR15 and BLR1 cDNAs differ in the 5' region, where the open reading frame of MDR15 is shorter by 45 codons. Southern-blot analysis indicates that the two transcripts for MDR15 and BLR1 are encoded by the same gene. Northern-blot analysis using a probe that hybridizes with both mRNAs demonstrated high-level expression in chronic B-lymphoid leukaemia and non-Hodgkin's lymphoma cells and, to a lesser extent, peripheral blood monocytes and lymphocytes. Reverse transcription-PCR studies with MDR15- and BLR1-specific primers showed similar levels of transcripts for both receptors in RNA that was positive in Northern-blot analysis. MDR15 and BLR1 have high structural similarity to receptors for human IL-8 (about 40% amino acid identity) and other chemokines. However, none of a series of radiolabelled chemokines (IL-8, NAP-2, GRO alpha, PF4, IP10, MCP-1, MCP-2, MCP-3, I-309, RANTES and MIP-1 alpha) and other ligands (C3a and leukotriene B4) bound to Jurkat transfectants that stably expressed either MDR15 or BLR1 mRNA. The fact that MDR15 and BLR1 are expressed on leucocytes and show marked sequence similarity to chemokine receptors suggests the existence of as yet unidentified chemokines. Alternative transcript formation affecting the 5'-terminal part of the coding region may be a way to modify ligand-binding selectivity.

Full text

PDF
773

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahuja S. K., Murphy P. M. Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J Biol Chem. 1993 Oct 5;268(28):20691–20694. [PubMed] [Google Scholar]
  2. Aruffo A., Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8573–8577. doi: 10.1073/pnas.84.23.8573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baggiolini M., Dewald B., Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 1994;55:97–179. [PubMed] [Google Scholar]
  4. Beckmann M. P., Munger W. E., Kozlosky C., VandenBos T., Price V., Lyman S., Gerard N. P., Gerard C., Cerretti D. P. Molecular characterization of the interleukin-8 receptor. Biochem Biophys Res Commun. 1991 Sep 16;179(2):784–789. doi: 10.1016/0006-291x(91)91885-g. [DOI] [PubMed] [Google Scholar]
  5. Birkenbach M., Josefsen K., Yalamanchili R., Lenoir G., Kieff E. Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J Virol. 1993 Apr;67(4):2209–2220. doi: 10.1128/jvi.67.4.2209-2220.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bischoff S. C., Krieger M., Brunner T., Rot A., von Tscharner V., Baggiolini M., Dahinden C. A. RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Eur J Immunol. 1993 Mar;23(3):761–767. doi: 10.1002/eji.1830230329. [DOI] [PubMed] [Google Scholar]
  7. Charo I. F., Myers S. J., Herman A., Franci C., Connolly A. J., Coughlin S. R. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2752–2756. doi: 10.1073/pnas.91.7.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chee M. S., Satchwell S. C., Preddie E., Weston K. M., Barrell B. G. Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature. 1990 Apr 19;344(6268):774–777. doi: 10.1038/344774a0. [DOI] [PubMed] [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  10. Clark-Lewis I., Moser B., Walz A., Baggiolini M., Scott G. J., Aebersold R. Chemical synthesis, purification, and characterization of two inflammatory proteins, neutrophil activating peptide 1 (interleukin-8) and neutrophil activating peptide. Biochemistry. 1991 Mar 26;30(12):3128–3135. doi: 10.1021/bi00226a021. [DOI] [PubMed] [Google Scholar]
  11. Dobner T., Wolf I., Emrich T., Lipp M. Differentiation-specific expression of a novel G protein-coupled receptor from Burkitt's lymphoma. Eur J Immunol. 1992 Nov;22(11):2795–2799. doi: 10.1002/eji.1830221107. [DOI] [PubMed] [Google Scholar]
  12. Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. doi: 10.1146/annurev.bi.60.070191.003253. [DOI] [PubMed] [Google Scholar]
  13. Federsppiel B., Melhado I. G., Duncan A. M., Delaney A., Schappert K., Clark-Lewis I., Jirik F. R. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics. 1993 Jun;16(3):707–712. doi: 10.1006/geno.1993.1251. [DOI] [PubMed] [Google Scholar]
  14. Gao J. L., Kuhns D. B., Tiffany H. L., McDermott D., Li X., Francke U., Murphy P. M. Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. J Exp Med. 1993 May 1;177(5):1421–1427. doi: 10.1084/jem.177.5.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gayle R. B., 3rd, Sleath P. R., Srinivason S., Birks C. W., Weerawarna K. S., Cerretti D. P., Kozlosky C. J., Nelson N., Vanden Bos T., Beckmann M. P. Importance of the amino terminus of the interleukin-8 receptor in ligand interactions. J Biol Chem. 1993 Apr 5;268(10):7283–7289. [PubMed] [Google Scholar]
  16. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  17. Holmes W. E., Lee J., Kuang W. J., Rice G. C., Wood W. I. Structure and functional expression of a human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1278–1280. doi: 10.1126/science.1840701. [DOI] [PubMed] [Google Scholar]
  18. Hébert C. A., Chuntharapai A., Smith M., Colby T., Kim J., Horuk R. Partial functional mapping of the human interleukin-8 type A receptor. Identification of a major ligand binding domain. J Biol Chem. 1993 Sep 5;268(25):18549–18553. [PubMed] [Google Scholar]
  19. Kaplan M. H., Smith D. I., Sundick R. S. Identification of a G protein coupled receptor induced in activated T cells. J Immunol. 1993 Jul 15;151(2):628–636. [PubMed] [Google Scholar]
  20. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LaRosa G. J., Thomas K. M., Kaufmann M. E., Mark R., White M., Taylor L., Gray G., Witt D., Navarro J. Amino terminus of the interleukin-8 receptor is a major determinant of receptor subtype specificity. J Biol Chem. 1992 Dec 15;267(35):25402–25406. [PubMed] [Google Scholar]
  22. Lee J., Horuk R., Rice G. C., Bennett G. L., Camerato T., Wood W. I. Characterization of two high affinity human interleukin-8 receptors. J Biol Chem. 1992 Aug 15;267(23):16283–16287. [PubMed] [Google Scholar]
  23. Loetscher M., Geiser T., O'Reilly T., Zwahlen R., Baggiolini M., Moser B. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem. 1994 Jan 7;269(1):232–237. [PubMed] [Google Scholar]
  24. Loetscher P., Seitz M., Clark-Lewis I., Baggiolini M., Moser B. Both interleukin-8 receptors independently mediate chemotaxis. Jurkat cells transfected with IL-8R1 or IL-8R2 migrate in response to IL-8, GRO alpha and NAP-2. FEBS Lett. 1994 Mar 21;341(2-3):187–192. doi: 10.1016/0014-5793(94)80454-0. [DOI] [PubMed] [Google Scholar]
  25. Moser B., Barella L., Mattei S., Schumacher C., Boulay F., Colombo M. P., Baggiolini M. Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem J. 1993 Aug 15;294(Pt 1):285–292. doi: 10.1042/bj2940285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moser B., Schumacher C., von Tscharner V., Clark-Lewis I., Baggiolini M. Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interleukin 8 receptors on human neutrophils. J Biol Chem. 1991 Jun 5;266(16):10666–10671. [PubMed] [Google Scholar]
  27. Murphy P. M., Tiffany H. L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1280–1283. doi: 10.1126/science.1891716. [DOI] [PubMed] [Google Scholar]
  28. Mutoh H., Bito H., Minami M., Nakamura M., Honda Z., Izumi T., Nakata R., Kurachi Y., Terano A., Shimizu T. Two different promoters direct expression of two distinct forms of mRNAs of human platelet-activating factor receptor. FEBS Lett. 1993 May 10;322(2):129–134. doi: 10.1016/0014-5793(93)81552-b. [DOI] [PubMed] [Google Scholar]
  29. Namba T., Sugimoto Y., Negishi M., Irie A., Ushikubi F., Kakizuka A., Ito S., Ichikawa A., Narumiya S. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature. 1993 Sep 9;365(6442):166–170. doi: 10.1038/365166a0. [DOI] [PubMed] [Google Scholar]
  30. Neote K., DiGregorio D., Mak J. Y., Horuk R., Schall T. J. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 1993 Feb 12;72(3):415–425. doi: 10.1016/0092-8674(93)90118-a. [DOI] [PubMed] [Google Scholar]
  31. Probst W. C., Snyder L. A., Schuster D. I., Brosius J., Sealfon S. C. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 1992 Jan-Feb;11(1):1–20. doi: 10.1089/dna.1992.11.1. [DOI] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schumacher C., Clark-Lewis I., Baggiolini M., Moser B. High- and low-affinity binding of GRO alpha and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10542–10546. doi: 10.1073/pnas.89.21.10542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spengler D., Waeber C., Pantaloni C., Holsboer F., Bockaert J., Seeburg P. H., Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature. 1993 Sep 9;365(6442):170–175. doi: 10.1038/365170a0. [DOI] [PubMed] [Google Scholar]
  35. Thomas K. M., Taylor L., Navarro J. The interleukin-8 receptor is encoded by a neutrophil-specific cDNA clone, F3R. J Biol Chem. 1991 Aug 15;266(23):14839–14841. [PubMed] [Google Scholar]
  36. Tokunaga K., Nakamura Y., Sakata K., Fujimori K., Ohkubo M., Sawada K., Sakiyama S. Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res. 1987 Nov 1;47(21):5616–5619. [PubMed] [Google Scholar]
  37. Valente A. J., Rozek M. M., Schwartz C. J., Graves D. T. Characterization of monocyte chemotactic protein-1 binding to human monocytes. Biochem Biophys Res Commun. 1991 Apr 15;176(1):309–314. doi: 10.1016/0006-291x(91)90925-w. [DOI] [PubMed] [Google Scholar]
  38. Van Riper G., Siciliano S., Fischer P. A., Meurer R., Springer M. S., Rosen H. Characterization and species distribution of high affinity GTP-coupled receptors for human rantes and monocyte chemoattractant protein 1. J Exp Med. 1993 Mar 1;177(3):851–856. doi: 10.1084/jem.177.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang J. M., McVicar D. W., Oppenheim J. J., Kelvin D. J. Identification of RANTES receptors on human monocytic cells: competition for binding and desensitization by homologous chemotactic cytokines. J Exp Med. 1993 Mar 1;177(3):699–705. doi: 10.1084/jem.177.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yoshimura T., Leonard E. J. Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes. J Immunol. 1990 Jul 1;145(1):292–297. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES