Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jul 15;309(Pt 2):431–436. doi: 10.1042/bj3090431

Breakdown of the stereospecificity of DD-peptidases and beta-lactamases with thiolester substrates.

C Damblon 1, G H Zhao 1, M Jamin 1, P Ledent 1, A Dubus 1, M Vanhove 1, X Raquet 1, L Christiaens 1, J M Frère 1
PMCID: PMC1135750  PMID: 7626006

Abstract

With peptide analogues of their natural substrates (the glycopeptide units of nascent peptidoglycan), the DD-peptidases exhibit a strict preference for D-Ala-D-Xaa C-termini. Gly is tolerated as the C-terminal residue, but with a significantly decreased activity. These enzymes were also known to hydrolyse various ester and thiolester analogues of their natural substrates. Some thiolesters with a C-terminal leaving group that exhibited L stereochemistry were significantly hydrolysed by some of the enzymes, particularly the Actinomadura R39 DD-peptidase, but the strict specificity for a D residue in the penultimate position was fully retained. These esters and thiolesters also behave as substrates for beta-lactamases. In this case, thiolesters exhibiting L stereochemistry in the ultimate position could also be hydrolysed, mainly by the class-C and class-D enzymes. However, more surprisingly, the class-C Enterobacter cloacae P99 beta-lactamase also hydrolysed thiolesters containing an L residue in the penultimate position, sometimes with a higher efficiency than the D isomer.

Full text

PDF
431

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam M., Damblon C., Jamin M., Zorzi W., Dusart V., Galleni M., el Kharroubi A., Piras G., Spratt B. G., Keck W. Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem J. 1991 Oct 15;279(Pt 2):601–604. doi: 10.1042/bj2790601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adam M., Damblon C., Plaitin B., Christiaens L., Frère J. M. Chromogenic depsipeptide substrates for beta-lactamases and penicillin-sensitive DD-peptidases. Biochem J. 1990 Sep 1;270(2):525–529. doi: 10.1042/bj2700525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop R. E., Weiner J. H. Coordinate regulation of murein peptidase activity and AmpC beta-lactamase synthesis in Escherichia coli. FEBS Lett. 1992 Jun 15;304(2-3):103–108. doi: 10.1016/0014-5793(92)80598-b. [DOI] [PubMed] [Google Scholar]
  4. Bugg T. D., Wright G. D., Dutka-Malen S., Arthur M., Courvalin P., Walsh C. T. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 1991 Oct 29;30(43):10408–10415. doi: 10.1021/bi00107a007. [DOI] [PubMed] [Google Scholar]
  5. De Meester F., Joris B., Reckinger G., Bellefroid-Bourguignon C., Frère J. M., Waley S. G. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem Pharmacol. 1987 Jul 15;36(14):2393–2403. doi: 10.1016/0006-2952(87)90609-5. [DOI] [PubMed] [Google Scholar]
  6. Dubus A., Wilkin J. M., Raquet X., Normark S., Frère J. M. Catalytic mechanism of active-site serine beta-lactamases: role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly triad. Biochem J. 1994 Jul 15;301(Pt 2):485–494. doi: 10.1042/bj3010485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frère J. M., Moreno R., Ghuysen J. M. Molecular weight, amino acid composition and physicochemical properties of the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R39. Biochem J. 1974 Oct;143(1):233–240. doi: 10.1042/bj1430233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galleni M., Amicosante G., Frère J. M. A survey of the kinetic parameters of class C beta-lactamases. Cephalosporins and other beta-lactam compounds. Biochem J. 1988 Oct 1;255(1):123–129. doi: 10.1042/bj2550123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holzhütter H. G., Colosimo A. SIMFIT: a microcomputer software-toolkit for modelistic studies in biochemistry. Comput Appl Biosci. 1990 Jan;6(1):23–28. doi: 10.1093/bioinformatics/6.1.23. [DOI] [PubMed] [Google Scholar]
  10. Jamin M., Adam M., Damblon C., Christiaens L., Frère J. M. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates. Biochem J. 1991 Dec 1;280(Pt 2):499–506. doi: 10.1042/bj2800499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jamin M., Damblon C., Millier S., Hakenbeck R., Frère J. M. Penicillin-binding protein 2x of Streptococcus pneumoniae: enzymic activities and interactions with beta-lactams. Biochem J. 1993 Jun 15;292(Pt 3):735–741. doi: 10.1042/bj2920735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Joris B., De Meester F., Galleni M., Reckinger G., Coyette J., Frere J. M., Van Beeumen J. The beta-lactamase of Enterobacter cloacae P99. Chemical properties, N-terminal sequence and interaction with 6 beta-halogenopenicillanates. Biochem J. 1985 May 15;228(1):241–248. doi: 10.1042/bj2280241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lamotte-Brasseur J., Knox J., Kelly J. A., Charlier P., Fonzé E., Dideberg O., Frére J. M. The structures and catalytic mechanisms of active-site serine beta-lactamases. Biotechnol Genet Eng Rev. 1994;12:189–230. doi: 10.1080/02648725.1994.10647912. [DOI] [PubMed] [Google Scholar]
  14. Ledent P., Raquet X., Joris B., Van Beeumen J., Frère J. M. A comparative study of class-D beta-lactamases. Biochem J. 1993 Jun 1;292(Pt 2):555–562. doi: 10.1042/bj2920555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leyh-Bouille M., Coyette J., Ghuysen J. M., Idczak J., Perkins H. R., Nieto M. Penicillin-sensitive DD-carboxypeptidase from Streptomyces strain R 61. Biochemistry. 1971 May 25;10(11):2163–2170. doi: 10.1021/bi00787a032. [DOI] [PubMed] [Google Scholar]
  16. Leyh-Bouille M., Nakel M., Frère J. M., Johnson K., Ghuysen J. M., Nieto M., Perkins H. R. Penicillin-sensitive DD-carboxypeptidases from Streptomyces strains R39 and K11. Biochemistry. 1972 Mar 28;11(7):1290–1298. doi: 10.1021/bi00757a027. [DOI] [PubMed] [Google Scholar]
  17. Lobkovsky E., Moews P. C., Liu H., Zhao H., Frere J. M., Knox J. R. Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11257–11261. doi: 10.1073/pnas.90.23.11257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matagne A., Misselyn-Bauduin A. M., Joris B., Erpicum T., Granier B., Frère J. M. The diversity of the catalytic properties of class A beta-lactamases. Biochem J. 1990 Jan 1;265(1):131–146. doi: 10.1042/bj2650131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raquet X., Lamotte-Brasseur J., Fonzé E., Goussard S., Courvalin P., Frère J. M. TEM beta-lactamase mutants hydrolysing third-generation cephalosporins. A kinetic and molecular modelling analysis. J Mol Biol. 1994 Dec 16;244(5):625–639. doi: 10.1006/jmbi.1994.1756. [DOI] [PubMed] [Google Scholar]
  20. Wilkin J. M., Jamin M., Damblon C., Zhao G. H., Joris B., Duez C., Frère J. M. The mechanism of action of DD-peptidases: the role of tyrosine-159 in the Streptomyces R61 DD-peptidase. Biochem J. 1993 Apr 15;291(Pt 2):537–544. doi: 10.1042/bj2910537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Xu Y., Soto G., Adachi H., van der Linden M. P., Keck W., Pratt R. F. Relative specificities of a series of beta-lactam-recognizing enzymes towards the side-chains of penicillins and of acyclic thioldepsipeptides. Biochem J. 1994 Sep 15;302(Pt 3):851–856. doi: 10.1042/bj3020851. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES