Abstract
Treatment of sarcoplasmic reticulum vesicles with diethylpyrocarbonate in the presence of a large excess of reagent, at pH 6.2 and at room temperature, reveals both a fast- and a slow-reacting population of protein residues. The loss of the Ca(2+)-ATPase activity is mainly associated with the fast-reacting population being partially sensitive to hydroxylamine. There is also an effect on the Ca(2+)-binding mechanism. Shorter derivatization times (5 min) produce a loss of the positive cooperativity of Ca2+ binding. When the treatment was prolonged for 30 min there was an additional decrease in the overall Ca2+ affinity. Curve-fitting procedures applied to the non-cooperative binding isotherms provide the equilibrium constants for the two Ca2+ sites, although they cannot discriminate between interacting and independent site mechanisms. Prestationary kinetics assays show 2 Ca2+:1 ATP ratios, at any extent of Ca2+ saturation, indicating that the Ca2+ sites are not independent. The Ca2+ dissociation profile after derivatization shows a decrease in the dissociation constant for the release of the second Ca2+, which is consistent with interacting sites. Isotopic exchange experiments show fast and slow components of equal amplitude even at subsaturating Ca2+ concentrations, which is incompatible with independent binding sites. The experimental data suggest a modification of the equilibrium binding constants making them more similar, but keeping the interacting character. The structural position of the external (cytoplasmic) and the internal (lumenal) Ca2+ sites remains unaltered in the absence of positive cooperativity.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
- Burstein Y., Walsh K. A., Neurath H. Evidence of an essential histidine residue in thermolysin. Biochemistry. 1974 Jan 1;13(1):205–210. doi: 10.1021/bi00698a030. [DOI] [PubMed] [Google Scholar]
- Caravaca F., Soler F., Gomez-Fernandez J. C., Fernandez-Belda F. Drug action of ritodrine on the sarcoplasmic reticulum Ca(2+)-ATPase from skeletal muscle. Arch Biochem Biophys. 1995 Apr 1;318(1):97–104. doi: 10.1006/abbi.1995.1209. [DOI] [PubMed] [Google Scholar]
- Carrillo N., Vallejos R. H. Essential histidyl residues of ferredoxin-NADP+ oxidoreductase revealed by diethyl pyrocarbonate inactivation. Biochemistry. 1983 Dec 6;22(25):5889–5897. doi: 10.1021/bi00294a031. [DOI] [PubMed] [Google Scholar]
- Champeil P., Guillain F. Rapid filtration study of the phosphorylation-dependent dissociation of calcium from transport sites of purified sarcoplasmic reticulum ATPase and ATP modulation of the catalytic cycle. Biochemistry. 1986 Nov 18;25(23):7623–7633. doi: 10.1021/bi00371a053. [DOI] [PubMed] [Google Scholar]
- Cheng K. C., Nowak T. A histidine residue at the active site of avian liver phosphoenolpyruvate carboxykinase. J Biol Chem. 1989 Nov 25;264(33):19666–19676. [PubMed] [Google Scholar]
- Clarke D. M., Loo T. W., Inesi G., MacLennan D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature. 1989 Jun 8;339(6224):476–478. doi: 10.1038/339476a0. [DOI] [PubMed] [Google Scholar]
- Coan C., DiCarlo R. Effect of diethyl pyrocarbonate modification on the calcium binding mechanism of the sarcoplasmic reticulum ATPase. J Biol Chem. 1990 Apr 5;265(10):5376–5384. [PubMed] [Google Scholar]
- Coffey R. L., Lagwinska E., Oliver M., Martonosi A. The mechanism of ATP hydrolysis by sacoplasmic reticulum. Arch Biochem Biophys. 1975 Sep;170(1):37–48. doi: 10.1016/0003-9861(75)90095-8. [DOI] [PubMed] [Google Scholar]
- Davidson G. A., Berman M. C. Calcium dependence during single-cycle catalysis of the sarcoplasmic reticulum ATPase. J Biol Chem. 1988 Aug 25;263(24):11786–11791. [PubMed] [Google Scholar]
- Dupont Y., Moutin M. J. Rapid filtration technique for metabolite fluxes across cell organelles. Methods Enzymol. 1987;148:675–683. doi: 10.1016/0076-6879(87)48064-6. [DOI] [PubMed] [Google Scholar]
- Eletr S., Inesi G. Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta. 1972 Sep 1;282(1):174–179. doi: 10.1016/0005-2736(72)90321-5. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Fernandez-Belda F., Kurzmack M., Inesi G. A comparative study of calcium transients by isotopic tracer, metallochromic indicator, and intrinsic fluorescence in sarcoplasmic reticulum ATPase. J Biol Chem. 1984 Aug 10;259(15):9687–9698. [PubMed] [Google Scholar]
- Forge V., Mintz E., Guillain F. Ca2+ binding to sarcoplasmic reticulum ATPase revisited. I. Mechanism of affinity and cooperativity modulation by H+ and Mg2+. J Biol Chem. 1993 May 25;268(15):10953–10960. [PubMed] [Google Scholar]
- Henderson I. M., Starling A. P., Wictome M., East J. M., Lee A. G. Binding of Ca2+ to the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum: kinetic studies. Biochem J. 1994 Feb 1;297(Pt 3):625–636. doi: 10.1042/bj2970625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inesi G., Kurzmack M., Coan C., Lewis D. E. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem. 1980 Apr 10;255(7):3025–3031. [PubMed] [Google Scholar]
- Inesi G. Sequential mechanism of calcium binding and translocation in sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem. 1987 Dec 5;262(34):16338–16342. [PubMed] [Google Scholar]
- Kirley T. L. Purification and characterization of the Mg2+-ATPase from rabbit skeletal muscle transverse tubule. J Biol Chem. 1988 Sep 5;263(25):12682–12689. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lin T. I., Morales M. F. Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins: the actomyosin ATPase system. Anal Biochem. 1977 Jan;77(1):10–17. doi: 10.1016/0003-2697(77)90284-6. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Clarke D. M., Loo T. W., Skerjanc I. S. Site-directed mutagenesis of the Ca2+ ATPase of sarcoplasmic reticulum. Acta Physiol Scand Suppl. 1992;607:141–150. [PubMed] [Google Scholar]
- Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
- Morris D. L., McKinley-McKee J. S. The histidines in liver alcohol dehydrogenase. Chemical modification with diethylpyrocarbonate. Eur J Biochem. 1972 Sep 25;29(3):515–520. doi: 10.1111/j.1432-1033.1972.tb02016.x. [DOI] [PubMed] [Google Scholar]
- Orlowski S., Champeil P. Kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum ATPase. Biochemistry. 1991 Jan 15;30(2):352–361. doi: 10.1021/bi00216a007. [DOI] [PubMed] [Google Scholar]
- Orlowski S., Champeil P. The two calcium ions initially bound to nonphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase can no longer be kinetically distinguished when they dissociate from phosphorylated ATPase toward the lumen. Biochemistry. 1991 Nov 26;30(47):11331–11342. doi: 10.1021/bi00111a020. [DOI] [PubMed] [Google Scholar]
- Pelton P. D., Ganzhorn A. J. The effect of histidine modification on the activity of myo-inositol monophosphatase from bovine brain. J Biol Chem. 1992 Mar 25;267(9):5916–5920. [PubMed] [Google Scholar]
- Petithory J. R., Jencks W. P. Sequential dissociation of Ca2+ from the calcium adenosinetriphosphatase of sarcoplasmic reticulum and the calcium requirement for its phosphorylation by ATP. Biochemistry. 1988 Jul 26;27(15):5553–5564. doi: 10.1021/bi00415a025. [DOI] [PubMed] [Google Scholar]
- Skerjanc I. S., Toyofuku T., Richardson C., MacLennan D. H. Mutation of glutamate 309 to glutamine alters one Ca(2+)-binding site in the Ca(2+)-ATPase of sarcoplasmic reticulum expressed in Sf9 cells. J Biol Chem. 1993 Jul 25;268(21):15944–15950. [PubMed] [Google Scholar]
- Sumbilla C., Cantilina T., Collins J. H., Malak H., Lakowicz J. R., Inesi G. Structural perturbation of the transmembrane region interferes with calcium binding by the Ca2+ transport ATPase. J Biol Chem. 1991 Jul 5;266(19):12682–12689. [PubMed] [Google Scholar]
- Sumbilla C., Lu L., Lewis D. E., Inesi G., Ishii T., Takeyasu K., Feng Y., Fambrough D. M. Ca(2+)-dependent and thapsigargin-inhibited phosphorylation of Na+,K(+)-ATPase catalytic domain following chimeric recombination with Ca(2+)-ATPase. J Biol Chem. 1993 Oct 5;268(28):21185–21192. [PubMed] [Google Scholar]
- Tenu J. P., Chelis C., Leger D. S., Carrette J. Mechanism of an active transport of calcium. Ethoxyformylation of sarcoplasmic reticulum vesicles. J Biol Chem. 1976 Jul 25;251(14):4322–4329. [PubMed] [Google Scholar]
