Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jul 15;309(Pt 2):607–611. doi: 10.1042/bj3090607

A comparison of the secondary structure of human brain mitochondrial and cytosolic 'malic' enzyme investigated by Fourier-transform infrared spectroscopy.

Z Kochan 1, J Karbowska 1, G Bukato 1, M M Zydowo 1, E Bertoli 1, F Tanfani 1, J Swierczyński 1
PMCID: PMC1135774  PMID: 7626027

Abstract

The secondary structure of human brain cytosolic and mitochondrial 'malic' enzymes purified to homogeneity has been investigated by Fourier-transform IR spectroscopy. The absorbance IR spectra of these two isoenzymes were slightly different, but calculated secondary-structure compositions were essentially similar (38% alpha-helix, 38-39% beta-sheet, 14% beta-turn and 9-10% random structure). These proportions were not affected by succinate, a positive effector of mitochondrial 'malic' enzyme activity. IR spectra indicate that the tertiary structures of human brain cytosolic and mitochondrial 'malic' enzymes are slightly different, and addition of succinate does not cause conformational changes to the tertiary structure of the mitochondrial enzyme. Thermal-denaturation patterns of the cytosolic and mitochondrial enzymes, obtained from spectra recorded at different temperatures in the absence or presence of Mg2+, suggest that the tertiary structure of both isoenzymes is stabilized by bivalent cations and that the cytosolic enzyme possesses a more compact tertiary structure.

Full text

PDF
607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J., Lee D. C., Baldwin S. A., Chapman D. Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter. J Biol Chem. 1987 Mar 15;262(8):3502–3509. [PubMed] [Google Scholar]
  2. Baker P. J., Thomas D. H., Barton C. H., Rice D. W., Bailey E. Crystallization of an NADP+-dependent malic enzyme from rat liver. J Mol Biol. 1987 Jan 5;193(1):233–235. doi: 10.1016/0022-2836(87)90643-7. [DOI] [PubMed] [Google Scholar]
  3. Banecki B., Zylicz M., Bertoli E., Tanfani F. Structural and functional relationships in DnaK and DnaK756 heat-shock proteins from Escherichia coli. J Biol Chem. 1992 Dec 15;267(35):25051–25058. [PubMed] [Google Scholar]
  4. Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
  5. Bukato G., Kochan Z., Swierczyński J. Purification and properties of cytosolic and mitochondrial malic enzyme isolated from human brain. Int J Biochem Cell Biol. 1995 Jan;27(1):47–54. doi: 10.1016/1357-2725(94)00057-3. [DOI] [PubMed] [Google Scholar]
  6. Bukato G., Kochan Z., Swierczyński J. Subregional and intracellular distribution of NADP-linked malic enzyme in human brain. Biochem Med Metab Biol. 1994 Feb;51(1):43–50. doi: 10.1006/bmmb.1994.1005. [DOI] [PubMed] [Google Scholar]
  7. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  8. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  9. Cook R. A. Distinct metal cofactor-induced conformational states in the NAD-specific malic enzyme of Escherichia coli as revealed by proteolysis studies. Biochim Biophys Acta. 1983 Dec 12;749(2):198–203. doi: 10.1016/0167-4838(83)90253-4. [DOI] [PubMed] [Google Scholar]
  10. Fini C., Bertoli E., Albertini G., Floridi A., Tanfani F. Structural and functional relationships in 5'-nucleotidase from bull seminal plasma. A Fourier transform infrared study. Biochim Biophys Acta. 1992 Jan 9;1118(2):187–193. doi: 10.1016/0167-4838(92)90149-8. [DOI] [PubMed] [Google Scholar]
  11. Haris P. I., Coke M., Chapman D. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin. Biochim Biophys Acta. 1989 Apr 6;995(2):160–167. doi: 10.1016/0167-4838(89)90075-7. [DOI] [PubMed] [Google Scholar]
  12. Haris P. I., Coke M., Chapman D. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin. Biochim Biophys Acta. 1989 Apr 6;995(2):160–167. doi: 10.1016/0167-4838(89)90075-7. [DOI] [PubMed] [Google Scholar]
  13. Hsu R. Y., Pry R. A. Kinetic studies of the malic enzyme of pigeon liver. "Half-of-the-sites" behavior of the enzyme tetramer in catalysis and substrate inhibition. Biochemistry. 1980 Mar 4;19(5):962–968. doi: 10.1021/bi00546a021. [DOI] [PubMed] [Google Scholar]
  14. Huang T. M., Chang G. G. Characterization of the tetramer-dimer-monomer equilibrium of the enzymatically active subunits of pigeon liver malic enzyme. Biochemistry. 1992 Dec 22;31(50):12658–12664. doi: 10.1021/bi00165a016. [DOI] [PubMed] [Google Scholar]
  15. Lee H. J., Chang G. G. Quaternary structure of pigeon liver malic enzyme. FEBS Lett. 1990 Dec 17;277(1-2):175–179. doi: 10.1016/0014-5793(90)80837-9. [DOI] [PubMed] [Google Scholar]
  16. Lee H. J., Chen Y. H., Chang G. G. Fluorescence studies on the dissociation and denaturation of pigeon liver malic enzyme. Biochim Biophys Acta. 1988 Jul 20;955(2):119–127. doi: 10.1016/0167-4838(88)90185-9. [DOI] [PubMed] [Google Scholar]
  17. Loeber G., Dworkin M. B., Infante A., Ahorn H. Characterization of cytosolic malic enzyme in human tumor cells. FEBS Lett. 1994 May 16;344(2-3):181–186. doi: 10.1016/0014-5793(94)00386-6. [DOI] [PubMed] [Google Scholar]
  18. Loeber G., Maurer-Fogy I., Schwendenwein R. Purification, cDNA cloning and heterologous expression of the human mitochondrial NADP(+)-dependent malic enzyme. Biochem J. 1994 Dec 15;304(Pt 3):687–692. doi: 10.1042/bj3040687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Magnuson M. A., Morioka H., Tecce M. F., Nikodem V. M. Coding nucleotide sequence of rat liver malic enzyme mRNA. J Biol Chem. 1986 Jan 25;261(3):1183–1186. [PubMed] [Google Scholar]
  20. Milne J. A., Cook R. A. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation. Biochemistry. 1979 Aug 7;18(16):3604–3610. doi: 10.1021/bi00583a026. [DOI] [PubMed] [Google Scholar]
  21. Rajapaksa R., Abu-Soud H., Raushel F. M., Harris B. G., Cook P. F. Pre-steady-state kinetics reveal a slow isomerization of the enzyme-NAD complex in the NAD-malic enzyme reaction. Biochemistry. 1993 Mar 2;32(8):1928–1934. doi: 10.1021/bi00059a007. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES