Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jul 1;309(Pt 1):167–173. doi: 10.1042/bj3090167

Variable effects of maturity-onset-diabetes-of-youth (MODY)-associated glucokinase mutations on substrate interactions and stability of the enzyme.

Y Liang 1, P Kesavan 1, L Q Wang 1, K Niswender 1, Y Tanizawa 1, M A Permutt 1, M A Magnuson 1, F M Matschinsky 1
PMCID: PMC1135815  PMID: 7619052

Abstract

Mutations in the human glucokinase (GK) gene are thought to cause maturity-onset diabetes of youth (MODY) by leading to the production of enzymes with reduced catalytic activities and increased glucose Km values. However, in some cases the diabetic phenotype is more severe than might be predicted from these apparent kinetic effects alone. To determine whether these mutations might also effect other characteristics of the enzyme, nine MODY-associated mutants were expressed as fusion proteins with Schistosoma japonicum glutathione S-transferase (GST) and compared with three wild-type human GK isoforms that were also expressed in the same manner. Three GST-GK isoforms (liver 1, liver 2 and islet) were kinetically indistinguishable from each other and from purified rat liver GK. Noteworthy is a glucose-induced fit effect for the interaction of trinitrophenyl (TNP)-ATP with GST-GK, whereby glucose significantly increased the affinity of TNP-ATP binding to GST-GK without changing the stoichiometry of binding. The nine MODY-associated mutations studied either showed diminished catalytic activity, substrate affinities, allosteric regulation, or stability of the fusion enzyme. We conclude that: (1) Gly261 and Lys414 are important for ATP binding; (2) Val203 may be essential for a glucose-induced fit effect; and (3) the stability of fusion protein may be significantly reduced when Glu300 is replaced by Lys. These results suggest that, in addition to effects on the Km and Vmax. of GK, a decrease in the ATP-binding affinity or stability of the mutated enzyme may also contribute to a reduction of GK activity in individuals with GK-MODY. In the B-cell this would have the effect of blunting glucose-stimulated insulin release, thereby contributing to the diabetic phenotype.

Full text

PDF
167

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedoya F. J., Matschinsky F. M., Shimizu T., O'Neil J. J., Appel M. C. Differential regulation of glucokinase activity in pancreatic islets and liver of the rat. J Biol Chem. 1986 Aug 15;261(23):10760–10764. [PubMed] [Google Scholar]
  2. Bork P., Sander C., Valencia A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7290–7294. doi: 10.1073/pnas.89.16.7290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974 Jan;137(1):143–144. doi: 10.1042/bj1370143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Froguel P., Zouali H., Vionnet N., Velho G., Vaxillaire M., Sun F., Lesage S., Stoffel M., Takeda J., Passa P. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med. 1993 Mar 11;328(10):697–702. doi: 10.1056/NEJM199303113281005. [DOI] [PubMed] [Google Scholar]
  6. Gidh-Jain M., Takeda J., Xu L. Z., Lange A. J., Vionnet N., Stoffel M., Froguel P., Velho G., Sun F., Cohen D. Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1932–1936. doi: 10.1073/pnas.90.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iynedjian P. B. Mammalian glucokinase and its gene. Biochem J. 1993 Jul 1;293(Pt 1):1–13. doi: 10.1042/bj2930001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jetton T. L., Liang Y., Pettepher C. C., Zimmerman E. C., Cox F. G., Horvath K., Matschinsky F. M., Magnuson M. A. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J Biol Chem. 1994 Feb 4;269(5):3641–3654. [PubMed] [Google Scholar]
  9. Katagiri H., Asano T., Ishihara H., Inukai K., Anai M., Miyazaki J., Tsukuda K., Kikuchi M., Yazaki Y., Oka Y. Nonsense mutation of glucokinase gene in late-onset non-insulin-dependent diabetes mellitus. Lancet. 1992 Nov 28;340(8831):1316–1317. doi: 10.1016/0140-6736(92)92494-z. [DOI] [PubMed] [Google Scholar]
  10. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liang Y., Jetton T. L., Zimmerman E. C., Najafi H., Matschinsky F. M., Magnuson M. A. Effects of alternate RNA splicing on glucokinase isoform activities in the pancreatic islet, liver, and pituitary. J Biol Chem. 1991 Apr 15;266(11):6999–7007. [PubMed] [Google Scholar]
  12. Liang Y., Najafi H., Smith R. M., Zimmerman E. C., Magnuson M. A., Tal M., Matschinsky F. M. Concordant glucose induction of glucokinase, glucose usage, and glucose-stimulated insulin release in pancreatic islets maintained in organ culture. Diabetes. 1992 Jul;41(7):792–806. doi: 10.2337/diab.41.7.792. [DOI] [PubMed] [Google Scholar]
  13. Magnuson M. A., Shelton K. D. An alternate promoter in the glucokinase gene is active in the pancreatic beta cell. J Biol Chem. 1989 Sep 25;264(27):15936–15942. [PubMed] [Google Scholar]
  14. Matschinsky F. M., Ellerman J. E. Metabolism of glucose in the islets of Langerhans. J Biol Chem. 1968 May 25;243(10):2730–2736. [PubMed] [Google Scholar]
  15. Matschinsky F., Liang Y., Kesavan P., Wang L., Froguel P., Velho G., Cohen D., Permutt M. A., Tanizawa Y., Jetton T. L. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest. 1993 Nov;92(5):2092–2098. doi: 10.1172/JCI116809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meglasson M. D., Burch P. T., Berner D. K., Najafi H., Vogin A. P., Matschinsky F. M. Chromatographic resolution and kinetic characterization of glucokinase from islets of Langerhans. Proc Natl Acad Sci U S A. 1983 Jan;80(1):85–89. doi: 10.1073/pnas.80.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moczydlowski E. G., Fortes P. A. Characterization of 2',3'-O-(2,4,6-trinitrocyclohexadienylidine)adenosine 5'-triphosphate as a fluorescent probe of the ATP site of sodium and potassium transport adenosine triphosphatase. Determination of nucleotide binding stoichiometry and ion-induced changes in affinity for ATP. J Biol Chem. 1981 Mar 10;256(5):2346–2356. [PubMed] [Google Scholar]
  18. Neet K. E., Keenan R. P., Tippett P. S. Observation of a kinetic slow transition in monomeric glucokinase. Biochemistry. 1990 Jan 23;29(3):770–777. doi: 10.1021/bi00455a026. [DOI] [PubMed] [Google Scholar]
  19. Printz R. L., Magnuson M. A., Granner D. K. Mammalian glucokinase. Annu Rev Nutr. 1993;13:463–496. doi: 10.1146/annurev.nu.13.070193.002335. [DOI] [PubMed] [Google Scholar]
  20. Shoham M., Steitz T. A. Crystallographic studies and model building of ATP at the active site of hexokinase. J Mol Biol. 1980 Jun 15;140(1):1–14. doi: 10.1016/0022-2836(80)90353-8. [DOI] [PubMed] [Google Scholar]
  21. Stinson R. A., Holbrook J. J. Equilibrium binding of nicotinamide nucleotides to lactate dehydrogenases. Biochem J. 1973 Apr;131(4):719–728. doi: 10.1042/bj1310719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stoffel M., Froguel P., Takeda J., Zouali H., Vionnet N., Nishi S., Weber I. T., Harrison R. W., Pilkis S. J., Lesage S. Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7698–7702. doi: 10.1073/pnas.89.16.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Storer A. C., Cornish-Bowden A. Kinetics of rat liver glucokinase. Co-operative interactions with glucose at physiologically significant concentrations. Biochem J. 1976 Oct 1;159(1):7–14. doi: 10.1042/bj1590007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sturis J., Kurland I. J., Byrne M. M., Mosekilde E., Froguel P., Pilkis S. J., Bell G. I., Polonsky K. S. Compensation in pancreatic beta-cell function in subjects with glucokinase mutations. Diabetes. 1994 May;43(5):718–723. doi: 10.2337/diab.43.5.718. [DOI] [PubMed] [Google Scholar]
  25. Takeda J., Gidh-Jain M., Xu L. Z., Froguel P., Velho G., Vaxillaire M., Cohen D., Shimada F., Makino H., Nishi S. Structure/function studies of human beta-cell glucokinase. Enzymatic properties of a sequence polymorphism, mutations associated with diabetes, and other site-directed mutants. J Biol Chem. 1993 Jul 15;268(20):15200–15204. [PubMed] [Google Scholar]
  26. Thomas P. J., Shenbagamurthi P., Sondek J., Hullihen J. M., Pedersen P. L. The cystic fibrosis transmembrane conductance regulator. Effects of the most common cystic fibrosis-causing mutation on the secondary structure and stability of a synthetic peptide. J Biol Chem. 1992 Mar 25;267(9):5727–5730. [PubMed] [Google Scholar]
  27. Ward L. D. Measurement of ligand binding to proteins by fluorescence spectroscopy. Methods Enzymol. 1985;117:400–414. doi: 10.1016/s0076-6879(85)17024-2. [DOI] [PubMed] [Google Scholar]
  28. Weinhouse S. Regulation of glucokinase in liver. Curr Top Cell Regul. 1976;11:1–50. [PubMed] [Google Scholar]
  29. Zelley M., Bell C. Successful implementation of Medicare risk contracting. Med Group Manage J. 1993 Jul-Aug;40(4):86, 88-90, 92-4. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES