Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jul 1;309(Pt 1):231–236. doi: 10.1042/bj3090231

The insulin enhancer binding site 2 (IEB2; FAR) box of the insulin gene regulatory region binds at least three factors that can be distinguished by their DNA binding characteristics.

M L Read 1, S B Smith 1, K Docherty 1
PMCID: PMC1135824  PMID: 7619061

Abstract

Located at approximately 230 bp upstream from the transcription start site, the insulin enhancer binding site 2 (IEB2) or FAR region of the insulin gene is one of several important sequences involved in regulating transcription of the gene. The present study was undertaken to characterize the transcription factors binding at the IEB2/FAR region of the rat insulin II gene and to compare these with factors known to bind to the equivalent sequence in the rat I and human insulin genes. An endocrine-enriched factor, EFD3, was identified, which bound to the sequence CAGGAG. A second factor (D4) was identified as the widely expressed factor USF (upstream stimulating factor), while a third factor (D5) remained largely uncharacterized. The binding affinities of these three factors differed in the three genes, suggesting that the role of the IEB2/FAR sequence may vary subtly between the rat insulin II, rat insulin I and human insulin genes.

Full text

PDF
231

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akazawa C., Sasai Y., Nakanishi S., Kageyama R. Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem. 1992 Oct 25;267(30):21879–21885. [PubMed] [Google Scholar]
  2. Boam D. S., Clark A. R., Docherty K. Positive and negative regulation of the human insulin gene by multiple trans-acting factors. J Biol Chem. 1990 May 15;265(14):8285–8296. [PubMed] [Google Scholar]
  3. Feder J. N., Jan L. Y., Jan Y. N. A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation. Mol Cell Biol. 1993 Jan;13(1):105–113. doi: 10.1128/mcb.13.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. German M. S., Wang J., Chadwick R. B., Rutter W. J. Synergistic activation of the insulin gene by a LIM-homeo domain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes Dev. 1992 Nov;6(11):2165–2176. doi: 10.1101/gad.6.11.2165. [DOI] [PubMed] [Google Scholar]
  5. Ishibashi M., Sasai Y., Nakanishi S., Kageyama R. Molecular characterization of HES-2, a mammalian helix-loop-helix factor structurally related to Drosophila hairy and Enhancer of split. Eur J Biochem. 1993 Aug 1;215(3):645–652. doi: 10.1111/j.1432-1033.1993.tb18075.x. [DOI] [PubMed] [Google Scholar]
  6. Karlsson O., Edlund T., Moss J. B., Rutter W. J., Walker M. D. A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8819–8823. doi: 10.1073/pnas.84.24.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lee T. C., Chow K. L., Fang P., Schwartz R. J. Activation of skeletal alpha-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Mol Cell Biol. 1991 Oct;11(10):5090–5100. doi: 10.1128/mcb.11.10.5090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee T. C., Schwartz R. J. Differential detection of multiple DNA-binding complexes using dissimilar polyanion competitors. Nucleic Acids Res. 1992 Jan 11;20(1):140–140. doi: 10.1093/nar/20.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leshkowitz D., Aronheim A., Walker M. D. Insulin-producing cells contain a cell-specific repressor activity that functions through multiple E-box sequences. DNA Cell Biol. 1992 Sep;11(7):549–558. doi: 10.1089/dna.1992.11.549. [DOI] [PubMed] [Google Scholar]
  10. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  11. Nelson C., Shen L. P., Meister A., Fodor E., Rutter W. J. Pan: a transcriptional regulator that binds chymotrypsin, insulin, and AP-4 enhancer motifs. Genes Dev. 1990 Jun;4(6):1035–1043. doi: 10.1101/gad.4.6.1035. [DOI] [PubMed] [Google Scholar]
  12. Ohlsson H., Karlsson O., Edlund T. A beta-cell-specific protein binds to the two major regulatory sequences of the insulin gene enhancer. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4228–4231. doi: 10.1073/pnas.85.12.4228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohlsson H., Thor S., Edlund T. Novel insulin promoter- and enhancer-binding proteins that discriminate between pancreatic alpha- and beta-cells. Mol Endocrinol. 1991 Jul;5(7):897–904. doi: 10.1210/mend-5-7-897. [DOI] [PubMed] [Google Scholar]
  14. Park C. W., Walker M. D. Subunit structure of cell-specific E box-binding proteins analyzed by quantitation of electrophoretic mobility shift. J Biol Chem. 1992 Aug 5;267(22):15642–15649. [PubMed] [Google Scholar]
  15. Read M. L., Clark A. R., Docherty K. The helix-loop-helix transcription factor USF (upstream stimulating factor) binds to a regulatory sequence of the human insulin gene enhancer. Biochem J. 1993 Oct 1;295(Pt 1):233–237. doi: 10.1042/bj2950233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reibel L., Besnard C., Lores P., Jami J., Gacon G. An insulinoma nuclear factor binding to GGGCCC motifs in human insulin gene. Nucleic Acids Res. 1993 Apr 11;21(7):1595–1600. doi: 10.1093/nar/21.7.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Robinson G. L., Cordle S. R., Henderson E., Weil P. A., Teitelman G., Stein R. Isolation and characterization of a novel transcription factor that binds to and activates insulin control element-mediated expression. Mol Cell Biol. 1994 Oct;14(10):6704–6714. doi: 10.1128/mcb.14.10.6704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rommel C., Leibiger I. B., Leibiger B., Walther R. CT-boxes are involved in control of the rat insulin II gene expression. FEBS Lett. 1994 May 23;345(1):17–22. doi: 10.1016/0014-5793(94)00430-7. [DOI] [PubMed] [Google Scholar]
  19. Sasai Y., Kageyama R., Tagawa Y., Shigemoto R., Nakanishi S. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev. 1992 Dec;6(12B):2620–2634. doi: 10.1101/gad.6.12b.2620. [DOI] [PubMed] [Google Scholar]
  20. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shibasaki Y., Sakura H., Takaku F., Kasuga M. Insulin enhancer binding protein has helix-loop-helix structure. Biochem Biophys Res Commun. 1990 Jul 16;170(1):314–321. doi: 10.1016/0006-291x(90)91276-x. [DOI] [PubMed] [Google Scholar]
  22. Shieh S. Y., Tsai M. J. Cell-specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene. J Biol Chem. 1991 Sep 5;266(25):16708–16714. [PubMed] [Google Scholar]
  23. Shiran R., Aronheim A., Rosen A., Park C. W., Leshkowitz D., Walker M. D. Positive and negative regulation of insulin gene transcription. Biochem Soc Trans. 1993 Feb;21(1):150–154. doi: 10.1042/bst0210150. [DOI] [PubMed] [Google Scholar]
  24. Stein R., Henderson E., Cordle S. R. Analysis of an insulin gene transcription control element. Positive and negative regulation appears to be mediated by different element sequences. FEBS Lett. 1994 Jan 31;338(2):187–190. doi: 10.1016/0014-5793(94)80362-5. [DOI] [PubMed] [Google Scholar]
  25. Walker M. D., Park C. W., Rosen A., Aronheim A. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res. 1990 Mar 11;18(5):1159–1166. doi: 10.1093/nar/18.5.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Whelan J., Poon D., Weil P. A., Stein R. Pancreatic beta-cell-type-specific expression of the rat insulin II gene is controlled by positive and negative cellular transcriptional elements. Mol Cell Biol. 1989 Aug;9(8):3253–3259. doi: 10.1128/mcb.9.8.3253. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES