Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jul 1;309(Pt 1):331–339. doi: 10.1042/bj3090331

Differential coupling of the formyl peptide receptor to adenylate cyclase and phospholipase C by the pertussis toxin-insensitive Gz protein.

R C Tsu 1, H W Lai 1, R A Allen 1, Y H Wong 1
PMCID: PMC1135838  PMID: 7619076

Abstract

In neutrophils, activation of receptors for the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMLP) leads to changes in intracellular events such as phosphoinositide turnover and Ca2+ mobilization. Studies have shown that activation of the cloned fMLP receptor can also lead to inhibition of cyclic AMP (cAMP) accumulation [Lang, Boulay, Li and Wollheim (1993) EMBO J. 12, 2671-2679; Uhing, Gettys, Tomhave, Snyderman and Didsbury (1992) Biochem. Biophys. Res. Commun. 183, 1033-1039]. These responses are apparently mediated through pertussis toxin-sensitive Gi proteins. Since other chemotactic factor receptors can couple to multiple G proteins, we examined the ability of the fMLP receptor to utilize a pertussis toxin-insensitive G protein, Gz, in its signal transduction pathways. The human fMLP receptor was transiently expressed in 293 and Ltk- cells, and subsequently assayed for receptor-mediated inhibition of cAMP accumulation and stimulation of phosphoinositide-specific phospholipase C. In transfected 293 cells, fMLP inhibited choriogonadotropin-stimulated cAMP accumulation by 50% and the response could be abolished by pertussis toxin. Co-expression of the fMLP receptor with the alpha subunit of Gz rendered the fMLP response pertussis toxin-insensitive, indicating that the endogenous Gi proteins can be substituted efficiently by Gz. In contrast, Ltk- cells expressing the fMLP receptor were able to respond to fMLP with an increase in the production of inositol phosphates, but this response was completely abolished by pertussis toxin even in cells co-expressing the alpha subunit of Gz. Thus, although both signalling pathways appeared to utilize Gi-like proteins, Gz can only replace Gi in mediating inhibition of cAMP accumulation, and not in the stimulation of phospholipase C. Differential interaction with Gz might represent a novel mechanism by which fMLP receptors regulate intracellular events.

Full text

PDF
331

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. A., Tolley J. O., Jesaitis A. J. Preparation and properties of an improved photoaffinity ligand for the N-formyl peptide receptor. Biochim Biophys Acta. 1986 Jul 16;882(3):271–280. doi: 10.1016/0304-4165(86)90248-5. [DOI] [PubMed] [Google Scholar]
  2. Allen R. A., Traynor A. E., Omann G. M., Jesaitis A. J. The chemotactic peptide receptor. A model for future understanding of chemotactic disorders. Hematol Oncol Clin North Am. 1988 Mar;2(1):33–59. [PubMed] [Google Scholar]
  3. Amatruda T. T., 3rd, Gerard N. P., Gerard C., Simon M. I. Specific interactions of chemoattractant factor receptors with G-proteins. J Biol Chem. 1993 May 15;268(14):10139–10144. [PubMed] [Google Scholar]
  4. Andersson T., Dahlgren C., Lew P. D., Stendahl O. Cell surface expression of fMet-Leu-Phe receptors on human neutrophils. Correlation to changes in the cytosolic free Ca2+ level and action of phorbol myristate acetate. J Clin Invest. 1987 Apr;79(4):1226–1233. doi: 10.1172/JCI112941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boulay F., Tardif M., Brouchon L., Vignais P. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry. 1990 Dec 18;29(50):11123–11133. doi: 10.1021/bi00502a016. [DOI] [PubMed] [Google Scholar]
  6. Buhl A. M., Eisfelder B. J., Worthen G. S., Johnson G. L., Russell M. Selective coupling of the human anaphylatoxin C5a receptor and alpha 16 in human kidney 293 cells. FEBS Lett. 1993 May 24;323(1-2):132–134. doi: 10.1016/0014-5793(93)81464-b. [DOI] [PubMed] [Google Scholar]
  7. Camps M., Carozzi A., Schnabel P., Scheer A., Parker P. J., Gierschik P. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature. 1992 Dec 17;360(6405):684–686. doi: 10.1038/360684a0. [DOI] [PubMed] [Google Scholar]
  8. Casey P. J., Fong H. K., Simon M. I., Gilman A. G. Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem. 1990 Feb 5;265(4):2383–2390. [PubMed] [Google Scholar]
  9. Conklin B. R., Chabre O., Wong Y. H., Federman A. D., Bourne H. R. Recombinant Gq alpha. Mutational activation and coupling to receptors and phospholipase C. J Biol Chem. 1992 Jan 5;267(1):31–34. [PubMed] [Google Scholar]
  10. Didsbury J. R., Ho Y. S., Snyderman R. Human Gi protein alpha-subunit: deduction of amino acid structure from a cloned cDNA. FEBS Lett. 1987 Jan 26;211(2):160–164. doi: 10.1016/0014-5793(87)81428-x. [DOI] [PubMed] [Google Scholar]
  11. Didsbury J. R., Uhing R. J., Tomhave E., Gerard C., Gerard N., Snyderman R. Functional high efficiency expression of cloned leukocyte chemoattractant receptor cDNAs. FEBS Lett. 1992 Feb 10;297(3):275–279. doi: 10.1016/0014-5793(92)80555-u. [DOI] [PubMed] [Google Scholar]
  12. Dvorak A. M., Warner J. A., Morgan E., Kissell-Rainville S., Lichtenstein L. M., MacGlashan D. W., Jr An ultrastructural analysis of tumor-promoting phorbol diester-induced degranulation of human basophils. Am J Pathol. 1992 Dec;141(6):1309–1322. [PMC free article] [PubMed] [Google Scholar]
  13. Federman A. D., Conklin B. R., Schrader K. A., Reed R. R., Bourne H. R. Hormonal stimulation of adenylyl cyclase through Gi-protein beta gamma subunits. Nature. 1992 Mar 12;356(6365):159–161. doi: 10.1038/356159a0. [DOI] [PubMed] [Google Scholar]
  14. Hide M., Ali H., Price S. R., Moss J., Beaven M. A. GTP-binding protein G alpha Z: its down-regulation by dexamethasone and its credentials as a mediator of antigen-induced responses in RBL-2H3 cells. Mol Pharmacol. 1991 Oct;40(4):473–479. [PubMed] [Google Scholar]
  15. Iiri T., Ohoka Y., Ui M., Katada T. Modification of the function of pertussis toxin substrate GTP-binding protein by cholera toxin-catalyzed ADP-ribosylation. J Biol Chem. 1992 Jan 15;267(2):1020–1026. [PubMed] [Google Scholar]
  16. Iiri T., Tohkin M., Morishima N., Ohoka Y., Ui M., Katada T. Chemotactic peptide receptor-supported ADP-ribosylation of a pertussis toxin substrate GTP-binding protein by cholera toxin in neutrophil-type HL-60 cells. J Biol Chem. 1989 Dec 15;264(35):21394–21400. [PubMed] [Google Scholar]
  17. Iñiguez-Lluhi J., Kleuss C., Gilman A. G. The importance of G-protein beta lambda subunits. Trends Cell Biol. 1993 Jul;3(7):230–236. doi: 10.1016/0962-8924(93)90122-h. [DOI] [PubMed] [Google Scholar]
  18. Katz A., Wu D., Simon M. I. Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature. 1992 Dec 17;360(6405):686–689. doi: 10.1038/360686a0. [DOI] [PubMed] [Google Scholar]
  19. Kikuchi A., Kozawa O., Kaibuchi K., Katada T., Ui M., Takai Y. Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin. J Biol Chem. 1986 Sep 5;261(25):11558–11562. [PubMed] [Google Scholar]
  20. Kleuss C., Hescheler J., Ewel C., Rosenthal W., Schultz G., Wittig B. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature. 1991 Sep 5;353(6339):43–48. doi: 10.1038/353043a0. [DOI] [PubMed] [Google Scholar]
  21. Kleuss C., Scherübl H., Hescheler J., Schultz G., Wittig B. Different beta-subunits determine G-protein interaction with transmembrane receptors. Nature. 1992 Jul 30;358(6385):424–426. doi: 10.1038/358424a0. [DOI] [PubMed] [Google Scholar]
  22. Kleuss C., Scherübl H., Hescheler J., Schultz G., Wittig B. Selectivity in signal transduction determined by gamma subunits of heterotrimeric G proteins. Science. 1993 Feb 5;259(5096):832–834. doi: 10.1126/science.8094261. [DOI] [PubMed] [Google Scholar]
  23. Lang J., Boulay F., Li G., Wollheim C. B. Conserved transducer coupling but different effector linkage upon expression of the myeloid fMet-Leu-Phe receptor in insulin secreting cells. EMBO J. 1993 Jul;12(7):2671–2679. doi: 10.1002/j.1460-2075.1993.tb05928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee C. W., Park D. J., Lee K. H., Kim C. G., Rhee S. G. Purification, molecular cloning, and sequencing of phospholipase C-beta 4. J Biol Chem. 1993 Oct 5;268(28):21318–21327. [PubMed] [Google Scholar]
  25. Liu Y. F., Albert P. R. Cell-specific signaling of the 5-HT1A receptor. Modulation by protein kinases C and A. J Biol Chem. 1991 Dec 15;266(35):23689–23697. [PubMed] [Google Scholar]
  26. Masters S. B., Miller R. T., Chi M. H., Chang F. H., Beiderman B., Lopez N. G., Bourne H. R. Mutations in the GTP-binding site of GS alpha alter stimulation of adenylyl cyclase. J Biol Chem. 1989 Sep 15;264(26):15467–15474. [PubMed] [Google Scholar]
  27. McFarland K. C., Sprengel R., Phillips H. S., Köhler M., Rosemblit N., Nikolics K., Segaloff D. L., Seeburg P. H. Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science. 1989 Aug 4;245(4917):494–499. doi: 10.1126/science.2502842. [DOI] [PubMed] [Google Scholar]
  28. McLeish K. R., Gierschik P., Schepers T., Sidiropoulos D., Jakobs K. H. Evidence that activation of a common G-protein by receptors for leukotriene B4 and N-formylmethionyl-leucyl-phenylalanine in HL-60 cells occurs by different mechanisms. Biochem J. 1989 Jun 1;260(2):427–434. doi: 10.1042/bj2600427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Offermans S., Schäfer R., Hoffmann B., Bombien E., Spicher K., Hinsch K. D., Schultz G., Rosenthal W. Agonist-sensitive binding of a photoreactive GTP analog to a G-protein alpha-subunit in membranes of HL-60 cells. FEBS Lett. 1990 Jan 15;260(1):14–18. doi: 10.1016/0014-5793(90)80054-m. [DOI] [PubMed] [Google Scholar]
  30. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  31. Schepers T. M., Brier M. E., McLeish K. R. Quantitative and qualitative differences in guanine nucleotide binding protein activation by formyl peptide and leukotriene B4 receptors. J Biol Chem. 1992 Jan 5;267(1):159–165. [PubMed] [Google Scholar]
  32. Schiffmann E., Showell H. V., Corcoran B. A., Ward P. A., Smith E., Becker E. L. The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli. J Immunol. 1975 Jun;114(6):1831–1837. [PubMed] [Google Scholar]
  33. Smrcka A. V., Sternweis P. C. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem. 1993 May 5;268(13):9667–9674. [PubMed] [Google Scholar]
  34. Snyderman R., Goetzl E. J. Molecular and cellular mechanisms of leukocyte chemotaxis. Science. 1981 Aug 21;213(4510):830–837. doi: 10.1126/science.6266014. [DOI] [PubMed] [Google Scholar]
  35. Snyderman R., Smith C. D., Verghese M. W. Model for leukocyte regulation by chemoattractant receptors: roles of a guanine nucleotide regulatory protein and polyphosphoinositide metabolism. J Leukoc Biol. 1986 Dec;40(6):785–800. doi: 10.1002/jlb.40.6.785. [DOI] [PubMed] [Google Scholar]
  36. Tang W. J., Gilman A. G. Adenylyl cyclases. Cell. 1992 Sep 18;70(6):869–872. doi: 10.1016/0092-8674(92)90236-6. [DOI] [PubMed] [Google Scholar]
  37. Tyagi S. R., Olson S. C., Burnham D. N., Lambeth J. D. Cyclic AMP-elevating agents block chemoattractant activation of diradylglycerol generation by inhibiting phospholipase D activation. J Biol Chem. 1991 Feb 25;266(6):3498–3504. [PubMed] [Google Scholar]
  38. Uhing R. J., Gettys T. W., Tomhave E., Snyderman R., Didsbury J. R. Differential regulation of cAMP by endogenous versus transfected formylpeptide chemoattractant receptors: implications for Gi-coupled receptor signaling. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1033–1039. doi: 10.1016/s0006-291x(05)80294-3. [DOI] [PubMed] [Google Scholar]
  39. Vallar L., Muca C., Magni M., Albert P., Bunzow J., Meldolesi J., Civelli O. Differential coupling of dopaminergic D2 receptors expressed in different cell types. Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in LtK- fibroblasts, hyperpolarization, and cytosolic-free Ca2+ concentration decrease in GH4C1 cells. J Biol Chem. 1990 Jun 25;265(18):10320–10326. [PubMed] [Google Scholar]
  40. Verghese M. W., Smith C. D., Snyderman R. Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca++ mobilization and cellular responses by leukocytes. Biochem Biophys Res Commun. 1985 Mar 15;127(2):450–457. doi: 10.1016/s0006-291x(85)80181-9. [DOI] [PubMed] [Google Scholar]
  41. Warner J. A., Yancey K. B., MacGlashan D. W., Jr The effect of pertussis toxin on mediator release from human basophils. J Immunol. 1987 Jul 1;139(1):161–165. [PubMed] [Google Scholar]
  42. Wong Y. H., Conklin B. R., Bourne H. R. Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science. 1992 Jan 17;255(5042):339–342. doi: 10.1126/science.1347957. [DOI] [PubMed] [Google Scholar]
  43. Wong Y. H., Federman A., Pace A. M., Zachary I., Evans T., Pouysségur J., Bourne H. R. Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation. Nature. 1991 May 2;351(6321):63–65. doi: 10.1038/351063a0. [DOI] [PubMed] [Google Scholar]
  44. Wong Y. H. Gi assays in transfected cells. Methods Enzymol. 1994;238:81–94. doi: 10.1016/0076-6879(94)38008-2. [DOI] [PubMed] [Google Scholar]
  45. Wu D., Katz A., Simon M. I. Activation of phospholipase C beta 2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5297–5301. doi: 10.1073/pnas.90.11.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wu D., LaRosa G. J., Simon M. I. G protein-coupled signal transduction pathways for interleukin-8. Science. 1993 Jul 2;261(5117):101–103. doi: 10.1126/science.8316840. [DOI] [PubMed] [Google Scholar]
  47. Xia Z., Choi E. J., Wang F., Storm D. R. The type III calcium/calmodulin-sensitive adenylyl cyclase is not specific to olfactory sensory neurons. Neurosci Lett. 1992 Sep 14;144(1-2):169–173. doi: 10.1016/0304-3940(92)90742-p. [DOI] [PubMed] [Google Scholar]
  48. Ye R. D., Quehenberger O., Thomas K. M., Navarro J., Cavanagh S. L., Prossnitz E. R., Cochrane C. G. The rabbit neutrophil N-formyl peptide receptor. cDNA cloning, expression, and structure/function implications. J Immunol. 1993 Feb 15;150(4):1383–1394. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES