Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Aug 15;310(Pt 1):225–232. doi: 10.1042/bj3100225

High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania.

S Brandau 1, A Dresel 1, J Clos 1
PMCID: PMC1135877  PMID: 7646449

Abstract

We have analysed the transcription of three heat-shock genes, HSP70, HSP83 and ClpB, in the protozoan parasite Leishmania. All three heat-shock genes are transcribed constitutively and not heat-inducibly. However, we find that two major heat-shock proteins, HSP70 and HSP83, are synthesized at elevated rates during heat stress. We conclude that the cellular stress response in Leishmaniae is regulated exclusively on a post-transcriptional level much in contrast with all other eukaryotes examined so far. The induced synthesis of HSP70 and HSP83, however, does not increase the steady-state level of either protein significantly. This is compensated by high constitutive levels of both proteins: HSP70 and HSP83 make up 2.1% and 2.8%, respectively, of the total protein in unstressed Leishmania promastigotes. Also, HSP70 is a strictly cytoplasmic protein in Leishmania and does not relocate into the nucleus during heat stress, as it does in other eukaryotes examined in the past.

Full text

PDF
225

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argaman M., Aly R., Shapira M. Expression of heat shock protein 83 in Leishmania is regulated post-transcriptionally. Mol Biochem Parasitol. 1994 Mar;64(1):95–110. doi: 10.1016/0166-6851(94)90138-4. [DOI] [PubMed] [Google Scholar]
  2. Bahr V., Stierhof Y. D., Ilg T., Demar M., Quinten M., Overath P. Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol. 1993 Mar;58(1):107–121. doi: 10.1016/0166-6851(93)90095-f. [DOI] [PubMed] [Google Scholar]
  3. Bhaumik M., Das S., Adhya S. Evidence for translational control of beta-tubulin synthesis during differentiation of Leishmania donovani. Parasitology. 1991 Oct;103(Pt 2):197–205. doi: 10.1017/s0031182000059485. [DOI] [PubMed] [Google Scholar]
  4. Button L. L., Russell D. G., Klein H. L., Medina-Acosta E., Karess R. E., McMaster W. R. Genes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):271–283. doi: 10.1016/0166-6851(89)90076-5. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Clos J., Brandau S. pJC20 and pJC40--two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. Protein Expr Purif. 1994 Apr;5(2):133–137. doi: 10.1006/prep.1994.1020. [DOI] [PubMed] [Google Scholar]
  7. Clos J., Westwood J. T., Becker P. B., Wilson S., Lambert K., Wu C. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell. 1990 Nov 30;63(5):1085–1097. doi: 10.1016/0092-8674(90)90511-c. [DOI] [PubMed] [Google Scholar]
  8. Feder J. H., Rossi J. M., Solomon J., Solomon N., Lindquist S. The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev. 1992 Aug;6(8):1402–1413. doi: 10.1101/gad.6.8.1402. [DOI] [PubMed] [Google Scholar]
  9. Glass D. J., Polvere R. I., Van der Ploeg L. H. Conserved sequences and transcription of the hsp70 gene family in Trypanosoma brucei. Mol Cell Biol. 1986 Dec;6(12):4657–4666. doi: 10.1128/mcb.6.12.4657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howard M. K., Sayers G., Miles M. A. Leishmania donovani metacyclic promastigotes: transformation in vitro, lectin agglutination, complement resistance, and infectivity. Exp Parasitol. 1987 Oct;64(2):147–156. doi: 10.1016/0014-4894(87)90138-x. [DOI] [PubMed] [Google Scholar]
  11. Hunter K. W., Cook C. L., Hayunga E. G. Leishmanial differentiation in vitro: induction of heat shock proteins. Biochem Biophys Res Commun. 1984 Dec 14;125(2):755–760. doi: 10.1016/0006-291x(84)90603-x. [DOI] [PubMed] [Google Scholar]
  12. Hübel A., Brandau S., Dresel A., Clos J. A member of the ClpB family of stress proteins is expressed during heat shock in Leishmania spp. Mol Biochem Parasitol. 1995 Mar;70(1-2):107–118. doi: 10.1016/0166-6851(95)00012-p. [DOI] [PubMed] [Google Scholar]
  13. Lawrence F., Robert-Gero M. Induction of heat shock and stress proteins in promastigotes of three Leishmania species. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4414–4417. doi: 10.1073/pnas.82.13.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee M. G., Atkinson B. L., Giannini S. H., Van der Ploeg L. H. Structure and expression of the hsp 70 gene family of Leishmania major. Nucleic Acids Res. 1988 Oct 25;16(20):9567–9585. doi: 10.1093/nar/16.20.9567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
  16. Miller J. S. Effects of temperature elevation on mRNA and protein synthesis in Leishmania mexicana amazonensis. Mol Biochem Parasitol. 1988 Aug;30(2):175–184. doi: 10.1016/0166-6851(88)90110-7. [DOI] [PubMed] [Google Scholar]
  17. Newport G., Culpepper J., Agabian N. Parasite heat-shock proteins. Parasitol Today. 1988 Nov;4(11):306–312. doi: 10.1016/0169-4758(88)90111-1. [DOI] [PubMed] [Google Scholar]
  18. Ohtsuka K., Laszlo A. The relationship between hsp 70 localization and heat resistance. Exp Cell Res. 1992 Oct;202(2):507–518. doi: 10.1016/0014-4827(92)90106-i. [DOI] [PubMed] [Google Scholar]
  19. Polla B. S. Heat shock proteins in host-parasite interactions. Immunol Today. 1991 Mar;12(3):A38–A41. doi: 10.1016/S0167-5699(05)80011-8. [DOI] [PubMed] [Google Scholar]
  20. Polson A., Coetzer T., Kruger J., von Maltzahn E., van der Merwe K. J. Improvements in the isolation of IgY from the yolks of eggs laid by immunized hens. Immunol Invest. 1985 Aug;14(4):323–327. doi: 10.3109/08820138509022667. [DOI] [PubMed] [Google Scholar]
  21. Polson A., von Wechmar M. B., van Regenmortel M. H. Isolation of viral IgY antibodies from yolks of immunized hens. Immunol Commun. 1980;9(5):475–493. doi: 10.3109/08820138009066010. [DOI] [PubMed] [Google Scholar]
  22. Rabindran S. K., Giorgi G., Clos J., Wu C. Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6906–6910. doi: 10.1073/pnas.88.16.6906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rabindran S. K., Haroun R. I., Clos J., Wisniewski J., Wu C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science. 1993 Jan 8;259(5092):230–234. doi: 10.1126/science.8421783. [DOI] [PubMed] [Google Scholar]
  24. Radi A., Miriam A., Michal S. The hsp83 intergenic region in Leishmania: conservation of sequence and function across two species. Exp Parasitol. 1995 Feb;80(1):159–162. doi: 10.1006/expr.1995.1019. [DOI] [PubMed] [Google Scholar]
  25. Sacks D. L., Hieny S., Sher A. Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol. 1985 Jul;135(1):564–569. [PubMed] [Google Scholar]
  26. Sacks D. L. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol. 1989 Jul;69(1):100–103. doi: 10.1016/0014-4894(89)90176-8. [DOI] [PubMed] [Google Scholar]
  27. Searle S., Campos A. J., Coulson R. M., Spithill T. W., Smith D. F. A family of heat shock protein 70-related genes are expressed in the promastigotes of Leishmania major. Nucleic Acids Res. 1989 Jul 11;17(13):5081–5095. doi: 10.1093/nar/17.13.5081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Searle S., Smith D. F. Leishmania major: characterisation and expression of a cytoplasmic stress-related protein. Exp Parasitol. 1993 Aug;77(1):43–52. doi: 10.1006/expr.1993.1059. [DOI] [PubMed] [Google Scholar]
  29. Shapira M., Pedraza G. Sequence analysis and transcriptional activation of heat shock protein 83 of Leishmania mexicana amazonensis. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):247–255. doi: 10.1016/0166-6851(90)90168-l. [DOI] [PubMed] [Google Scholar]
  30. Shapira M., Pinelli E. Heat-shock protein 83 of Leishmania mexicana amazonensis is an abundant cytoplasmic protein with a tandemly repeated genomic arrangement. Eur J Biochem. 1989 Nov 6;185(2):231–236. doi: 10.1111/j.1432-1033.1989.tb15107.x. [DOI] [PubMed] [Google Scholar]
  31. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  32. Sullivan M. A., Olson C. L., Winquist A. G., Engman D. M. Expression and localization of Trypanosoma cruzi hsp60. Mol Biochem Parasitol. 1994 Dec;68(2):197–208. doi: 10.1016/0166-6851(94)90165-1. [DOI] [PubMed] [Google Scholar]
  33. Tissières A., Mitchell H. K., Tracy U. M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol. 1974 Apr 15;84(3):389–398. doi: 10.1016/0022-2836(74)90447-1. [DOI] [PubMed] [Google Scholar]
  34. Velazquez J. M., Lindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell. 1984 Mar;36(3):655–662. doi: 10.1016/0092-8674(84)90345-3. [DOI] [PubMed] [Google Scholar]
  35. Zimarino V., Wu C. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. 1987 Jun 25-Jul 1Nature. 327(6124):727–730. doi: 10.1038/327727a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES