Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Aug 15;310(Pt 1):249–253. doi: 10.1042/bj3100249

3'-immature tRNA(Trp) is required for ribosome inactivation by gelonin,a plant RNA N-glycosidase.

M Brigotti 1, D Carnicelli 1, P Alvergna 1, A Pallanca 1, R Lorenzetti 1, M Denaro 1, S Sperti 1, L Montanaro 1
PMCID: PMC1135880  PMID: 7646453

Abstract

Inactivation of ribosomes by gelonin, a ribosome-inactivating protein with RNA N-glycosidase activity on 28 S rRNA, requires macromolecular cofactors present in post-ribosomal supernatants. One of these cofactors has been purified from a rat liver extract and identified as an RNA about 70 nt long which in sequence analysis shows a high level of similarity with mammalian (bovine) tRNA(Trp). The pattern of the sequencing gel is consistent with the co-existence in the preparation of two 3'-immature tRNA(Trp) species, missing only A75, or both A75 and C74. In the presence of ATP, CTP and tRNA nucleotidyltransferase, the gelonin-stimulating RNA is a good acceptor of tryptophan. An oligodeoxynucleotide complementary to positions 55 to 72 of mammalian (bovine) tRNA(Trp) hybridizes with the gelonin-stimulating RNA as demonstrated by gel mobility shift and ribonuclease H digestion. The oligodeoxynucleotide-directed ribonuclease H treatment also abolishes the gelonin-promoting activity of crude preparations of RNA, giving strong evidence that the only active RNA is a tRNA(Trp)-like molecule.

Full text

PDF
249

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbieri L., Battelli M. G., Stirpe F. Ribosome-inactivating proteins from plants. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):237–282. doi: 10.1016/0304-4157(93)90002-6. [DOI] [PubMed] [Google Scholar]
  2. Berkner K. L., Folk W. R. Polynucleotide kinase exchange reaction: quantitave assay for restriction endonuclease-generated 5'-phosphoroyl termini in DNA. J Biol Chem. 1977 May 25;252(10):3176–3184. [PubMed] [Google Scholar]
  3. Bonness M. S., Ready M. P., Irvin J. D., Mabry T. J. Pokeweed antiviral protein inactivates pokeweed ribosomes; implications for the antiviral mechanism. Plant J. 1994 Feb;5(2):173–183. doi: 10.1046/j.1365-313x.1994.05020173.x. [DOI] [PubMed] [Google Scholar]
  4. Brigotti M., Carnicelli D., Sperti S., Montanaro L. RNA present in post-ribosomal supernatants makes ribosomes susceptible to inactivation by gelonin and alpha-sarcin. Biochem Mol Biol Int. 1994 Mar;32(3):585–596. [PubMed] [Google Scholar]
  5. Brigotti M., Lorenzetti R., Denaro M., Carnicelli D., Montanaro L., Sperti S. Oligonucleotides complementary to the alpha-sarcin domain of 28S rRNA inhibit cell-free protein synthesis. Biochem Mol Biol Int. 1993 Dec;31(5):897–903. [PubMed] [Google Scholar]
  6. Brigotti M., Sperti S., Carnicelli D., Montanaro L. Partial purification of two proteins which sensitize ribosomes to gelonin: sensitization is not linked to phosphorylation of ribosomal proteins. Toxicon. 1993 Aug;31(8):989–996. doi: 10.1016/0041-0101(93)90258-k. [DOI] [PubMed] [Google Scholar]
  7. Carnicelli D., Brigotti M., Montanaro L., Sperti S. Differential requirement of ATP and extra-ribosomal proteins for ribosome inactivation by eight RNA N-glycosidases. Biochem Biophys Res Commun. 1992 Jan 31;182(2):579–582. doi: 10.1016/0006-291x(92)91771-h. [DOI] [PubMed] [Google Scholar]
  8. Coleman W. H., Roberts W. K. Factor requirements for the tritin inactivation of animal cell ribosomes. Biochim Biophys Acta. 1981 Jun 26;654(1):57–66. doi: 10.1016/0005-2787(81)90136-2. [DOI] [PubMed] [Google Scholar]
  9. Endo Y., Glück A., Chan Y. L., Tsurugi K., Wool I. G. RNA-protein interaction. An analysis with RNA oligonucleotides of the recognition by alpha-sarcin of a ribosomal domain critical for function. J Biol Chem. 1990 Feb 5;265(4):2216–2222. [PubMed] [Google Scholar]
  10. England T. E., Bruce A. G., Uhlenbeck O. C. Specific labeling of 3' termini of RNA with T4 RNA ligase. Methods Enzymol. 1980;65(1):65–74. doi: 10.1016/s0076-6879(80)65011-3. [DOI] [PubMed] [Google Scholar]
  11. Fournier M., Labouesse J., Dirheimer G., Fix C., Keith G. Primary structure of bovine liver tRNATrp. Biochim Biophys Acta. 1978 Nov 21;521(1):198–208. doi: 10.1016/0005-2787(78)90262-9. [DOI] [PubMed] [Google Scholar]
  12. Gross M., Crow P., White J. The site of hydrolysis by rabbit reticulocyte peptidyl-tRNA hydrolase is the 3'-AMP terminus of susceptible tRNA substrates. J Biol Chem. 1992 Jan 25;267(3):2080–2086. [PubMed] [Google Scholar]
  13. Harada F., Sawyer R. C., Dahlberg J. E. A primer ribonucleic acid for initiation of in vitro Rous sarcarcoma virus deoxyribonucleic acid synthesis. J Biol Chem. 1975 May 10;250(9):3487–3497. [PubMed] [Google Scholar]
  14. Hu J. C., Dahlberg J. E. Structural features required for the binding of tRNATrp to avian myeloblastosis virus reverse transcriptase. Nucleic Acids Res. 1983 Jul 25;11(14):4823–4833. doi: 10.1093/nar/11.14.4823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee-Huang S., Kung H. F., Huang P. L., Huang P. L., Li B. Q., Huang P., Huang H. I., Chen H. C. A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Lett. 1991 Oct 7;291(1):139–144. doi: 10.1016/0014-5793(91)81122-o. [DOI] [PubMed] [Google Scholar]
  16. Li Z., Brow D. A. A rapid assay for quantitative detection of specific RNAs. Nucleic Acids Res. 1993 Sep 25;21(19):4645–4646. doi: 10.1093/nar/21.19.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moazed D., Noller H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell. 1989 May 19;57(4):585–597. doi: 10.1016/0092-8674(89)90128-1. [DOI] [PubMed] [Google Scholar]
  18. Moazed D., Noller H. F. Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3725–3728. doi: 10.1073/pnas.88.9.3725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nashimoto M. 3' truncated tRNAArg is essential for in vitro specific cleavage of partially synthesized mouse 18S rRNA. Nucleic Acids Res. 1993 Oct 11;21(20):4696–4702. doi: 10.1093/nar/21.20.4696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nothwang H. G., Coux O., Keith G., Silva-Pereira I., Scherrer K. The major RNA in prosomes of HeLa cells and duck erythroblasts is tRNA(Lys,3). Nucleic Acids Res. 1992 Apr 25;20(8):1959–1965. doi: 10.1093/nar/20.8.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peattie D. A., Gilbert W. Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4679–4682. doi: 10.1073/pnas.77.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prestle J., Schönfelder M., Adam G., Mundry K. W. Type 1 ribosome-inactivating proteins depurinate plant 25S rRNA without species specificity. Nucleic Acids Res. 1992 Jun 25;20(12):3179–3182. doi: 10.1093/nar/20.12.3179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roberts W. K., Stewart T. S. Purification and properties of a translation inhibitor from wheat germ. Biochemistry. 1979 Jun 12;18(12):2615–2621. doi: 10.1021/bi00579a028. [DOI] [PubMed] [Google Scholar]
  25. Rodnina M. V., Wintermeyer W. Two tRNA-binding sites in addition to A and P sites on eukaryotic ribosomes. J Mol Biol. 1992 Nov 20;228(2):450–459. doi: 10.1016/0022-2836(92)90834-7. [DOI] [PubMed] [Google Scholar]
  26. Sperti S., Brigotti M., Zamboni M., Carnicelli D., Montanaro L. Requirements for the inactivation of ribosomes by gelonin. Biochem J. 1991 Jul 1;277(Pt 1):281–284. doi: 10.1042/bj2770281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sprinzl M., Hartmann T., Weber J., Blank J., Zeidler R. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1989;17 (Suppl):r1–172. doi: 10.1093/nar/17.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walter P., Blobel G. Disassembly and reconstitution of signal recognition particle. Cell. 1983 Sep;34(2):525–533. doi: 10.1016/0092-8674(83)90385-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES