Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Sep 1;310(Pt 2):547–551. doi: 10.1042/bj3100547

Induction of cystine transport activity in mouse peritoneal macrophages by bacterial lipopolysaccharide.

H Sato 1, K Fujiwara 1, J Sagara 1, S Bannai 1
PMCID: PMC1135929  PMID: 7654193

Abstract

The transport of cystine has been investigated in mouse peritoneal macrophages cultured in vitro. The transport activity for cystine was very low in freshly isolated macrophages but was potently induced during culture in the presence of bacterial lipopolysaccharide (LPS) at concentrations as low as 0.1 ng/ml. The transport activity for cystine was enhanced when the cells were incubated with tumour necrosis factor-alpha (TNF-alpha), but not with interferon-gamma (IFN-gamma) or interleukin-1. IFN-gamma was rather repressive in the induction of the activity by LPS or TNF-alpha. The transport activity for cystine induced by LPS has been characterized. Cystine was transported mainly by Na(+)-independent system and the uptake of cystine was inhibited by extracellular glutamate and homocysteate, but not by aspartate, indicating that the transport of cystine in macrophages treated with LPS is mediated by System xc-. Glutathione content of the macrophages increased when they were exposed to LPS, and this increase was, at least in part, attributable to the induced activity of the cystine transport.

Full text

PDF
547

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Bannai S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem. 1986 Feb 15;261(5):2256–2263. [PubMed] [Google Scholar]
  3. Bannai S. Induction of cystine and glutamate transport activity in human fibroblasts by diethyl maleate and other electrophilic agents. J Biol Chem. 1984 Feb 25;259(4):2435–2440. [PubMed] [Google Scholar]
  4. Bannai S., Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem. 1980 Mar 25;255(6):2372–2376. [PubMed] [Google Scholar]
  5. Bannai S., Sato H., Ishii T., Taketani S. Enhancement of glutathione levels in mouse peritoneal macrophages by sodium arsenite, cadmium chloride and glucose/glucose oxidase. Biochim Biophys Acta. 1991 Apr 17;1092(2):175–179. doi: 10.1016/0167-4889(91)90153-o. [DOI] [PubMed] [Google Scholar]
  6. Bannai S., Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol. 1986;89(1):1–8. doi: 10.1007/BF01870891. [DOI] [PubMed] [Google Scholar]
  7. Bogle R. G., Baydoun A. R., Pearson J. D., Moncada S., Mann G. E. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J. 1992 May 15;284(Pt 1):15–18. doi: 10.1042/bj2840015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christensen H. N. Organic ion transport during seven decades. The amino acids. Biochim Biophys Acta. 1984 Sep 3;779(3):255–269. doi: 10.1016/0304-4157(84)90012-1. [DOI] [PubMed] [Google Scholar]
  9. Clancy R. M., Levartovsky D., Leszczynska-Piziak J., Yegudin J., Abramson S. B. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3680–3684. doi: 10.1073/pnas.91.9.3680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  11. Herskowitz K., Bode B. P., Block E. R., Souba W. W. The effects of endotoxin on glutamine transport by pulmonary artery endothelial cells. J Surg Res. 1991 Apr;50(4):356–361. doi: 10.1016/0022-4804(91)90203-x. [DOI] [PubMed] [Google Scholar]
  12. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  13. Johnston R. B., Jr Current concepts: immunology. Monocytes and macrophages. N Engl J Med. 1988 Mar 24;318(12):747–752. doi: 10.1056/NEJM198803243181205. [DOI] [PubMed] [Google Scholar]
  14. Liew F. Y., Li Y., Millott S. Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol. 1990 Dec 15;145(12):4306–4310. [PubMed] [Google Scholar]
  15. Lind D. S., Copeland E. M., 3rd, Souba W. W. Endotoxin stimulates arginine transport in pulmonary artery endothelial cells. Surgery. 1993 Aug;114(2):199–205. [PubMed] [Google Scholar]
  16. Piani D., Fontana A. Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol. 1994 Apr 1;152(7):3578–3585. [PubMed] [Google Scholar]
  17. Páramo J. A., Pérez J. L., Serrano M., Rocha E. Types 1 and 2 plasminogen activator inhibitor and tumor necrosis factor alpha in patients with sepsis. Thromb Haemost. 1990 Aug 13;64(1):3–6. [PubMed] [Google Scholar]
  18. Sato H., Fujiwara M., Bannai S. Effect of lipopolysaccharide on transport and metabolism of arginine in mouse peritoneal macrophages. J Leukoc Biol. 1992 Aug;52(2):161–164. doi: 10.1002/jlb.52.2.161. [DOI] [PubMed] [Google Scholar]
  19. Sato H., Ishii T., Sugita Y., Bannai S. Induction of cationic amino acid transport activity in mouse peritoneal macrophages by lipopolysaccharide. Biochim Biophys Acta. 1991 Oct 14;1069(1):46–52. doi: 10.1016/0005-2736(91)90102-e. [DOI] [PubMed] [Google Scholar]
  20. Sato H., Watanabe H., Ishii T., Bannai S. Neutral amino acid transport in mouse peritoneal macrophages. J Biol Chem. 1987 Sep 25;262(27):13015–13019. [PubMed] [Google Scholar]
  21. Stuehr D. J., Kwon N. S., Nathan C. F. FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun. 1990 Apr 30;168(2):558–565. doi: 10.1016/0006-291x(90)92357-6. [DOI] [PubMed] [Google Scholar]
  22. Tanaka H., Sugimoto H., Yoshioka T., Sugimoto T. Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple-organ failure. Ann Surg. 1991 Jan;213(1):81–85. doi: 10.1097/00000658-199101000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  24. Watanabe H., Bannai S. Induction of cystine transport activity in mouse peritoneal macrophages. J Exp Med. 1987 Mar 1;165(3):628–640. doi: 10.1084/jem.165.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES