Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Sep 15;310(Pt 3):807–818. doi: 10.1042/bj3100807

Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species.

M J McConville 1, L F Schnur 1, C Jaffe 1, P Schneider 1
PMCID: PMC1135969  PMID: 7575413

Abstract

The most abundant surface macromolecule on the promastigote stage of leishmanial parasites is a polymorphic lipophosphoglycan (LPG). We have elucidated the structures of two new LPGs, from Leishmania tropica (LRC-L36) and L. aethiopica (LRC-L495), and investigated the nature of intra-specific polymorphism in the previously characterized LPG of L. major (LRC-L456 and -L580). These molecules contain a phosphoglycan chain, made up of repeating PO4-6Gal beta 1-4Man units and a conserved hexaglycosyl-phosphatidylinositol membrane anchor. Extensive polymorphism occurs in the extent to which the LPG repeat units are substituted with different glycan side chains. The L. tropica LPG is the most complex LPG characterized to date, as most of the repeat units are substituted with more than 19 different glycan side chains. All of these side chains, including the novel major glycans, Arap beta 1-3Glc beta 1- and +/- Arap beta 1-2Glc beta 1-4[+/- Arap beta 1-2]Glc beta 1-, are linked to the C-3 position of the backbone disaccharide galactose. In contrast, the L. aethiopica LPG repeat units are partially substituted (35%) with single alpha-mannose residues that are linked, unusually, to the C-2 position of the mannose in the backbone disaccharide. Polymorphism is also evident in the spectrum of alpha-mannose-containing oligosaccharides that cap the non-reducing terminus of the phosphoglycan chains of these LPGs. Finally, analysis of the L. major LPGs showed that, while some strains contain LPGs which are highly substituted with side chains of beta Gal, Gal beta 1-3Gal beta 1- and Arap beta 1-2Gal beta 1-3Gal beta 1-, the LPGs of other strains (i.e L. major LRC-L456) are essentially unsubstituted. Recent studies have shown that the LPG side chains and cap structures can mediate promastigote attachment to a number of different receptors along the midgut of the sandfly vector. The possible significance of LPG polymorphism on the ability of these parasites to infect a number of different sandfly vectors is discussed.

Full text

PDF
807

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. El-On J., Bradley D. J., Freeman J. C. Leishmania donovani: action of excreted factor on hydrolytic enzyme activity of macrophages from mice with genetically different resistance to infection. Exp Parasitol. 1980 Apr;49(2):167–174. doi: 10.1016/0014-4894(80)90114-9. [DOI] [PubMed] [Google Scholar]
  2. Ferguson M. A., Homans S. W., Dwek R. A., Rademacher T. W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 1988 Feb 12;239(4841 Pt 1):753–759. doi: 10.1126/science.3340856. [DOI] [PubMed] [Google Scholar]
  3. Handman E., Greenblatt C. L., Goding J. W. An amphipathic sulphated glycoconjugate of Leishmania: characterization with monoclonal antibodies. EMBO J. 1984 Oct;3(10):2301–2306. doi: 10.1002/j.1460-2075.1984.tb02130.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Homans S. W., Mehlert A., Turco S. J. Solution structure of the lipophosphoglycan of Leishmania donovani. Biochemistry. 1992 Jan 28;31(3):654–661. doi: 10.1021/bi00118a004. [DOI] [PubMed] [Google Scholar]
  5. Ilg T., Etges R., Overath P., McConville M. J., Thomas-Oates J., Thomas J., Homans S. W., Ferguson M. A. Structure of Leishmania mexicana lipophosphoglycan. J Biol Chem. 1992 Apr 5;267(10):6834–6840. [PubMed] [Google Scholar]
  6. Ilg T., Harbecke D., Wiese M., Overath P. Monoclonal antibodies directed against Leishmania secreted acid phosphatase and lipophosphoglycan. Partial characterization of private and public epitopes. Eur J Biochem. 1993 Oct 15;217(2):603–615. doi: 10.1111/j.1432-1033.1993.tb18283.x. [DOI] [PubMed] [Google Scholar]
  7. Ilg T., Stierhof Y. D., Wiese M., McConville M. J., Overath P. Characterization of phosphoglycan-containing secretory products of Leishmania. Parasitology. 1994;108 (Suppl):S63–S71. doi: 10.1017/s0031182000075739. [DOI] [PubMed] [Google Scholar]
  8. Jaffe C. L., Perez L., Schnur L. F. Lipophosphoglycan and secreted acid phosphatase of Leishmania tropica share species-specific epitopes. Mol Biochem Parasitol. 1990 Jun;41(2):233–240. doi: 10.1016/0166-6851(90)90186-p. [DOI] [PubMed] [Google Scholar]
  9. Karp C. L., Turco S. J., Sacks D. L. Lipophosphoglycan masks recognition of the Leishmania donovani promastigote surface by human kala-azar serum. J Immunol. 1991 Jul 15;147(2):680–684. [PubMed] [Google Scholar]
  10. McConville M. J., Blackwell J. M. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem. 1991 Aug 15;266(23):15170–15179. [PubMed] [Google Scholar]
  11. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McConville M. J., Homans S. W. Identification of the defect in lipophosphoglycan biosynthesis in a non-pathogenic strain of Leishmania major. J Biol Chem. 1992 Mar 25;267(9):5855–5861. [PubMed] [Google Scholar]
  13. McConville M. J., Homans S. W., Thomas-Oates J. E., Dell A., Bacic A. Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J Biol Chem. 1990 May 5;265(13):7385–7394. [PubMed] [Google Scholar]
  14. McConville M. J., Thomas-Oates J. E., Ferguson M. A., Homans S. W. Structure of the lipophosphoglycan from Leishmania major. J Biol Chem. 1990 Nov 15;265(32):19611–19623. [PubMed] [Google Scholar]
  15. McConville M. J., Turco S. J., Ferguson M. A., Sacks D. L. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J. 1992 Oct;11(10):3593–3600. doi: 10.1002/j.1460-2075.1992.tb05443.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pimenta P. F., Saraiva E. M., Rowton E., Modi G. B., Garraway L. A., Beverley S. M., Turco S. J., Sacks D. L. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9155–9159. doi: 10.1073/pnas.91.19.9155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pimenta P. F., Turco S. J., McConville M. J., Lawyer P. G., Perkins P. V., Sacks D. L. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992 Jun 26;256(5065):1812–1815. doi: 10.1126/science.1615326. [DOI] [PubMed] [Google Scholar]
  18. Sacks D. L., Pimenta P. F., McConville M. J., Schneider P., Turco S. J. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med. 1995 Feb 1;181(2):685–697. doi: 10.1084/jem.181.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schlein Y., Romano H. Leishmania major and L. donovani: effects on proteolytic enzymes of Phlebotomus papatasi (Diptera, Psychodidae). Exp Parasitol. 1986 Dec;62(3):376–380. doi: 10.1016/0014-4894(86)90045-7. [DOI] [PubMed] [Google Scholar]
  20. Schlein Y., Schnur L. F., Jacobson R. L. Released glycoconjugate of indigenous Leishmania major enhances survival of a foreign L. major in Phlebotomus papatasi. Trans R Soc Trop Med Hyg. 1990 May-Jun;84(3):353–355. doi: 10.1016/0035-9203(90)90315-6. [DOI] [PubMed] [Google Scholar]
  21. Schneider P., Ralton J. E., McConville M. J., Ferguson M. A. Analysis of the neutral glycan fractions of glycosyl-phosphatidylinositols by thin-layer chromatography. Anal Biochem. 1993 Apr;210(1):106–112. doi: 10.1006/abio.1993.1158. [DOI] [PubMed] [Google Scholar]
  22. Schneider P., Schnur L. F., Jaffe C. L., Ferguson M. A., McConville M. J. Glycoinositol-phospholipid profiles of four serotypically distinct Old World Leishmania strains. Biochem J. 1994 Dec 1;304(Pt 2):603–609. doi: 10.1042/bj3040603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schnur L. F., Jacobson R. L. Surface reaction of Leishmania. IV. Variation in the surface membrane carbohydrates of different strains of Leishmania major. Ann Trop Med Parasitol. 1989 Oct;83(5):455–463. doi: 10.1080/00034983.1989.11812372. [DOI] [PubMed] [Google Scholar]
  24. Schnur L. F., Sarfstein R., Jaffe C. L. Monoclonal antibodies against leishmanial membranes react with specific excreted factors (EF). Ann Trop Med Parasitol. 1990 Oct;84(5):447–456. doi: 10.1080/00034983.1990.11812494. [DOI] [PubMed] [Google Scholar]
  25. Schnur L. F., Zuckerman A., Greenblatt C. L. Leishmanial serotypes as distinguished by the gel diffusion of factors excreted in vitro and in vivo. Isr J Med Sci. 1972 Jul;8(7):932–942. [PubMed] [Google Scholar]
  26. Thomas J. R., McConville M. J., Thomas-Oates J. E., Homans S. W., Ferguson M. A., Gorin P. A., Greis K. D., Turco S. J. Refined structure of the lipophosphoglycan of Leishmania donovani. J Biol Chem. 1992 Apr 5;267(10):6829–6833. [PubMed] [Google Scholar]
  27. Turco S. J., Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. doi: 10.1146/annurev.mi.46.100192.000433. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES