Abstract
The regulation of hepatic mitochondrial carnitine palmitoyltransferase-I (CPT-I) was studied in rats during starvation and insulin-dependent diabetes and in rat H4IIE cells. The Vmax. for CPT-I in hepatic mitochondrial outer membranes isolated from starved and diabetic rats increased 2- and 3-fold respectively over fed control values with no change in Km values for substrates. Regulation of malonyl-CoA sensitivity of CPT-I in isolated mitochondrial outer membranes was indicated by an 8-fold increase in Ki during starvation and by a 50-fold increase in Ki in the diabetic state. Peroxisomal and microsomal CPT also had decreased sensitivity to inhibition by malonyl-CoA during starvation. CPT-I mRNA abundance was 7.5 times greater in livers of 48-h-starved rats and 14.6 times greater in livers of insulin-dependent diabetic rats compared with livers of fed rats. In H4IIE cells, insulin increased CPT-I sensitivity to inhibition by malonyl-CoA in 4 h, and sensitivity continued to increase up to 24 h after insulin addition. CPT-I mRNA levels in H4IIE cells were decreased by insulin after 4 h and continued to decrease so that at 24 h there was a 10-fold difference. The half-life of CPT-I mRNA was 4 h in the presence of actinomycin D or with actinomycin D plus insulin. These results suggest that insulin regulates CPT-I by inhibiting transcription of the CPT-I gene.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Chowdhury M. H., Alberti K. G. Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J. 1986 Nov 1;239(3):593–601. doi: 10.1042/bj2390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Chowdhury M. H., Davis S. N., Alberti K. G. Regulation of ketogenesis, gluconeogenesis, and glycogen synthesis by insulin and proinsulin in rat hepatocyte monolayer cultures. Diabetes. 1986 Nov;35(11):1286–1293. doi: 10.2337/diab.35.11.1286. [DOI] [PubMed] [Google Scholar]
- Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
- Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
- Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Cook G. A. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem. 1984 Oct 10;259(19):12030–12033. [PubMed] [Google Scholar]
- Cook G. A., Gamble M. S. Regulation of carnitine palmitoyltransferase by insulin results in decreased activity and decreased apparent Ki values for malonyl-CoA. J Biol Chem. 1987 Feb 15;262(5):2050–2055. [PubMed] [Google Scholar]
- Cook G. A., Weakley L. J. Effects of starvation on the carnitine palmitoyltransferase of hepatic peroxisomes. Biochem Soc Trans. 1990 Oct;18(5):988–988. doi: 10.1042/bst0180988. [DOI] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derrick J. P., Ramsay R. R. L-carnitine acyltransferase in intact peroxisomes is inhibited by malonyl-CoA. Biochem J. 1989 Sep 15;262(3):801–806. doi: 10.1042/bj2620801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esser V., Britton C. H., Weis B. C., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J Biol Chem. 1993 Mar 15;268(8):5817–5822. [PubMed] [Google Scholar]
- Gamble M. S., Cook G. A. Alteration of the apparent Ki of carnitine palmitoyltransferase for malonyl-CoA by the diabetic state and reversal by insulin. J Biol Chem. 1985 Aug 15;260(17):9516–9519. [PubMed] [Google Scholar]
- Granner D., Pilkis S. The genes of hepatic glucose metabolism. J Biol Chem. 1990 Jun 25;265(18):10173–10176. [PubMed] [Google Scholar]
- Guzman M., Kolodziej M. P., Caldwell A., Corstorphine C. G., Zammit V. A. Evidence against direct involvement of phosphorylation in the activation of carnitine palmitoyltransferase by okadaic acid in rat hepatocytes. Biochem J. 1994 Jun 15;300(Pt 3):693–699. doi: 10.1042/bj3000693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guzmán M., Castro J. Okadaic acid stimulates carnitine palmitoyltransferase I activity and palmitate oxidation in isolated rat hepatocytes. FEBS Lett. 1991 Oct 7;291(1):105–108. doi: 10.1016/0014-5793(91)81114-n. [DOI] [PubMed] [Google Scholar]
- Guzmán M., Geelen M. J. Activity of carnitine palmitoyltransferase in mitochondrial outer membranes and peroxisomes in digitonin-permeabilized hepatocytes. Selective modulation of mitochondrial enzyme activity by okadaic acid. Biochem J. 1992 Oct 15;287(Pt 2):487–492. doi: 10.1042/bj2870487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harano Y., Kashiwagi A., Kojima H., Suzuki M., Hashimoto T., Shigeta Y. Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS Lett. 1985 Sep 2;188(2):267–272. doi: 10.1016/0014-5793(85)80385-9. [DOI] [PubMed] [Google Scholar]
- Harano Y., Kosugi K., Kashiwagi A., Nakano T., Hidaka H., Shigeta Y. Regulatory mechanism of ketogenesis by glucagon and insulin in isolated and cultured hepatocytes. J Biochem. 1982 May;91(5):1739–1748. doi: 10.1093/oxfordjournals.jbchem.a133866. [DOI] [PubMed] [Google Scholar]
- Kashfi K., Cook G. A. Proteinase treatment of intact hepatic mitochondria has differential effects on inhibition of carnitine palmitoyltransferase by different inhibitors. Biochem J. 1992 Mar 15;282(Pt 3):909–914. doi: 10.1042/bj2820909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolodziej M. P., Zammit V. A. Re-evaluation of the interaction of malonyl-CoA with the rat liver mitochondrial carnitine palmitoyltransferase system by using purified outer membranes. Biochem J. 1990 Apr 1;267(1):85–90. doi: 10.1042/bj2670085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lilly K., Bugaisky G. E., Umeda P. K., Bieber L. L. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive. Arch Biochem Biophys. 1990 Jul;280(1):167–174. doi: 10.1016/0003-9861(90)90532-4. [DOI] [PubMed] [Google Scholar]
- MacDougald O. A., Cornelius P., Liu R., Lane M. D. Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes. J Biol Chem. 1995 Jan 13;270(2):647–654. doi: 10.1074/jbc.270.2.647. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
- Murthy M. S., Pande S. V. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987 Jan;84(2):378–382. doi: 10.1073/pnas.84.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy M. S., Pande S. V. Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. J Biol Chem. 1994 Jul 15;269(28):18283–18286. [PubMed] [Google Scholar]
- Murthy M. S., Pande S. V. Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987 Dec 15;248(3):727–733. doi: 10.1042/bj2480727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mynatt R. L., Greenhaw J. J., Cook G. A. Cholate extracts of mitochondrial outer membranes increase inhibition by malonyl-CoA of carnitine palmitoyltransferase-I by a mechanism involving phospholipids. Biochem J. 1994 May 1;299(Pt 3):761–767. doi: 10.1042/bj2990761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mynatt R. L., Lappi M. D., Cook G. A. Myocardial carnitine palmitoyltransferase of the mitochondrial outer membrane is not altered by fasting. Biochim Biophys Acta. 1992 Sep 22;1128(1):105–111. doi: 10.1016/0005-2760(92)90263-u. [DOI] [PubMed] [Google Scholar]
- Mynatt R. L., Park E. A., Thorngate F. E., Das H. K., Cook G. A. Changes in carnitine palmitoyltransferase-I mRNA abundance produced by hyperthyroidism and hypothyroidism parallel changes in activity. Biochem Biophys Res Commun. 1994 Jun 15;201(2):932–937. doi: 10.1006/bbrc.1994.1791. [DOI] [PubMed] [Google Scholar]
- Niot I., Pacot F., Bouchard P., Gresti J., Bernard A., Bezard J., Clouet P. Involvement of microsomal vesicles in part of the sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition in mitochondrial fractions of rat liver. Biochem J. 1994 Dec 1;304(Pt 2):577–584. doi: 10.1042/bj3040577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien R. M., Granner D. K. Regulation of gene expression by insulin. Biochem J. 1991 Sep 15;278(Pt 3):609–619. doi: 10.1042/bj2780609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park E. A., Gurney A. L., Nizielski S. E., Hakimi P., Cao Z., Moorman A., Hanson R. W. Relative roles of CCAAT/enhancer-binding protein beta and cAMP regulatory element-binding protein in controlling transcription of the gene for phosphoenolpyruvate carboxykinase (GTP). J Biol Chem. 1993 Jan 5;268(1):613–619. [PubMed] [Google Scholar]
- Parsons D. F., Williams G. R., Chance B. Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci. 1966 Jul 14;137(2):643–666. doi: 10.1111/j.1749-6632.1966.tb50188.x. [DOI] [PubMed] [Google Scholar]
- Prip-Buus C., Bouthillier-Voisin A. C., Kohl C., Demaugre F., Girard J., Pegorier J. P. Evidence for an impaired long-chain fatty acid oxidation and ketogenesis in Fao hepatoma cells. Eur J Biochem. 1992 Oct 1;209(1):291–298. doi: 10.1111/j.1432-1033.1992.tb17288.x. [DOI] [PubMed] [Google Scholar]
- Prip-Buus C., Pegorier J. P., Duee P. H., Kohl C., Girard J. Evidence that the sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA is an important site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal development and effects of pancreatic hormones in cultured rabbit hepatocytes. Biochem J. 1990 Jul 15;269(2):409–415. doi: 10.1042/bj2690409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki K., Cripe T. P., Koch S. R., Andreone T. L., Petersen D. D., Beale E. G., Granner D. K. Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin. J Biol Chem. 1984 Dec 25;259(24):15242–15251. [PubMed] [Google Scholar]
- Schnaitman C., Erwin V. G., Greenawalt J. W. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1967 Mar;32(3):719–735. doi: 10.1083/jcb.32.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thumelin S., Esser V., Charvy D., Kolodziej M., Zammit V. A., McGarry D., Girard J., Pegorier J. P. Expression of liver carnitine palmitoyltransferase I and II genes during development in the rat. Biochem J. 1994 Jun 1;300(Pt 2):583–587. doi: 10.1042/bj3000583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkins P. A., Ferrell E. V., Jr, Pedersen J. I., Hoefler G. Peroxisomal fatty acid beta-oxidation in HepG2 cells. Arch Biochem Biophys. 1991 Sep;289(2):329–336. doi: 10.1016/0003-9861(91)90419-j. [DOI] [PubMed] [Google Scholar]
- Woeltje K. F., Esser V., Weis B. C., Sen A., Cox W. F., McPhaul M. J., Slaughter C. A., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver mitochondrial carnitine palmitoyltransferase II. J Biol Chem. 1990 Jun 25;265(18):10720–10725. [PubMed] [Google Scholar]
- Yang E. K., Radominska A., Winder B. S., Dannenberg A. J. Dietary lipids coinduce xenobiotic metabolizing enzymes in rat liver. Biochim Biophys Acta. 1993 May 20;1168(1):52–58. doi: 10.1016/0005-2760(93)90265-b. [DOI] [PubMed] [Google Scholar]