Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Sep 15;310(Pt 3):909–916. doi: 10.1042/bj3100909

Dolichol is not a necessary moiety for lipid-linked oligosaccharide substrates of the mannosyltransferases involved in in vitro N-linked-oligosaccharide assembly.

I B Wilson 1, M C Webberley 1, L Revers 1, S L Flitsch 1
PMCID: PMC1135982  PMID: 7575426

Abstract

Dolichol is utilized in vivo as an unusually large anchor on which the precursor for N-linked oligosaccharides is assembled by a series of glycosyltransferases. The role of dolichol in enzyme substrate recognition is investigated. Thus the biosynthetic intermediate NN'-diacetylchitobiose was chemically linked to either dolichol or the much shorter fully saturated tetraisoprenoid phytanol. Both lipids were used as substrates by a recombinant, soluble beta-1,4-mannosyltransferase. beta-[3H]Mannosylated lipids from this reaction were then used as substrates for the subsequent mannosyltransferases from yeast or rat liver microsomes. It was found that both the dolichyl- and phytanyl-linked substrates were easily mannosylated to form Man5GlcNAc2, with some further mannosylation to Man7GlcNAc2 and Man9GlcNAc2 at low concentrations of lipid-linked substrate. It is concluded that dolichol is not necessary in vitro as part of the substrate for the mannosyltransferases in the biosynthetic pathway for N-glycosylation.

Full text

PDF
909

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeijon C., Hirschberg C. B. Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci. 1992 Jan;17(1):32–36. doi: 10.1016/0968-0004(92)90424-8. [DOI] [PubMed] [Google Scholar]
  2. Albright C. F., Orlean P., Robbins P. W. A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7366–7369. doi: 10.1073/pnas.86.19.7366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albright C. F., Robbins R. W. The sequence and transcript heterogeneity of the yeast gene ALG1, an essential mannosyltransferase involved in N-glycosylation. J Biol Chem. 1990 Apr 25;265(12):7042–7049. [PubMed] [Google Scholar]
  4. BURGOS J., HEMMING F. W., PENNOCK J. F., MORTON R. A. DOLICHOL: A NATURALLY-OCCURRING C100 ISOPRENOID ALCOHOL. Biochem J. 1963 Sep;88:470–482. [PMC free article] [PubMed] [Google Scholar]
  5. Bugg T. D., Brandish P. E. From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett. 1994 Jun 15;119(3):255–262. doi: 10.1111/j.1574-6968.1994.tb06898.x. [DOI] [PubMed] [Google Scholar]
  6. Camp L. A., Chauhan P., Farrar J. D., Lehrman M. A. Defective mannosylation of glycosylphosphatidylinositol in Lec35 Chinese hamster ovary cells. J Biol Chem. 1993 Mar 25;268(9):6721–6728. [PubMed] [Google Scholar]
  7. Chambers J., Forsee W. T., Elbein A. D. Enzymatic transfer of mannose from mannosyl-phosphoryl-polyprenol to lipid-linked oligosaccharides by pig aorta. J Biol Chem. 1977 Apr 25;252(8):2498–2506. [PubMed] [Google Scholar]
  8. Chapman A., Li E., Kornfeld S. The biosynthesis of the major lipid-linked oligosaccharide of Chinese hamster ovary cells occurs by the ordered addition of mannose residues. J Biol Chem. 1979 Oct 25;254(20):10243–10249. [PubMed] [Google Scholar]
  9. Chojnacki T., Dallner G. The biological role of dolichol. Biochem J. 1988 Apr 1;251(1):1–9. doi: 10.1042/bj2510001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clark A. F., Villemez C. L. An artificial mannosyl acceptor for GDP-D-mannose: lipid phosphate transmannosylase from Phaseolus aureus. FEBS Lett. 1973 May 15;32(1):84–86. doi: 10.1016/0014-5793(73)80743-4. [DOI] [PubMed] [Google Scholar]
  11. Datta A. K., Lehrman M. A. Both potential dolichol recognition sequences of hamster GlcNAc-1-phosphate transferase are necessary for normal enzyme function. J Biol Chem. 1993 Jun 15;268(17):12663–12668. [PubMed] [Google Scholar]
  12. Flitsch S. L., Goodridge D. M., Guilbert B., Revers L., Webberley M. C., Wilson I. B. The chemoenzymatic synthesis of neoglycolipids and lipid-linked oligosaccharides using glycosyltransferases. Bioorg Med Chem. 1994 Nov;2(11):1243–1250. doi: 10.1016/s0968-0896(00)82075-1. [DOI] [PubMed] [Google Scholar]
  13. Forsee W. T., Schutzbach J. S. Purification and characterization of a phospholipid-dependent alpha-mannosidase from rabbit liver. J Biol Chem. 1981 Jul 10;256(13):6577–6582. [PubMed] [Google Scholar]
  14. Ichishima E., Arai M., Shigematsu Y., Kumagai H., Sumida-Tanaka R. Purification of an acidic alpha-D-mannosidase from Aspergillus saitoi and specific cleavage of 1,2-alpha-D-mannosidic linkage in yeast mannan. Biochim Biophys Acta. 1981 Mar 13;658(1):45–53. doi: 10.1016/0005-2744(81)90248-5. [DOI] [PubMed] [Google Scholar]
  15. Li E., Kornfeld S. Biosynthesis of lipid-linked oligosaccharides. Isolation and structure of a second lipid-linked oligosaccharide in Chinese hamster ovary cells. J Biol Chem. 1979 Apr 25;254(8):2754–2758. [PubMed] [Google Scholar]
  16. Li Y. T. Studies on the glycosidases in jack bean meal. I. Isolation and properties of alpha-mannosidase. J Biol Chem. 1967 Dec 10;242(23):5474–5480. [PubMed] [Google Scholar]
  17. Liang C. J., Yamashita K., Kobata A. Structural study of the carbohydrate moiety of bovine pancreatic ribonuclease B. J Biochem. 1980 Jul;88(1):51–58. [PubMed] [Google Scholar]
  18. Revers L., Wilson I. B., Webberley M. C., Flitsch S. L. The potential dolichol recognition sequence of beta-1,4-mannosyltransferase is not required for enzymic activity using phytanyl-pyrophosphoryl-alpha-N,N'- diacetylchitobioside as acceptor. Biochem J. 1994 Apr 1;299(Pt 1):23–27. doi: 10.1042/bj2990023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Snider M. D., Rogers O. C. Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis. Cell. 1984 Mar;36(3):753–761. doi: 10.1016/0092-8674(84)90355-6. [DOI] [PubMed] [Google Scholar]
  20. Takasaki S., Mizuochi T., Kobata A. Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol. 1982;83:263–268. doi: 10.1016/0076-6879(82)83019-x. [DOI] [PubMed] [Google Scholar]
  21. Vidugiriene J., Menon A. K. The GPI anchor of cell-surface proteins is synthesized on the cytoplasmic face of the endoplasmic reticulum. J Cell Biol. 1994 Oct;127(2):333–341. doi: 10.1083/jcb.127.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wilson I. B., Taylor J. P., Webberley M. C., Turner N. J., Flitsch S. L. A novel mono-branched lipid phosphate acts as a substrate for dolichyl phosphate mannose synthetase. Biochem J. 1993 Oct 1;295(Pt 1):195–201. doi: 10.1042/bj2950195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zeng Y. C., Lehrman M. A. A block at Man5GlcNAc2-pyrophosphoryldolichol in intact but not disrupted castanospermine and swainsonine-resistant Chinese hamster ovary cells. J Biol Chem. 1990 Feb 5;265(4):2296–2305. [PubMed] [Google Scholar]
  24. Zimmerman J. W., Robbins P. W. The hydrophobic domain of dolichyl-phosphate-mannose synthase is not essential for enzyme activity or growth in Saccharomyces cerevisiae. J Biol Chem. 1993 Aug 5;268(22):16746–16753. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES