Abstract
An NAD+:cysteine ADP-ribosyltransferase activity was purified from bovine erythrocytes on the assumption that, like pertussis toxin, the enzyme would exhibit a cysteine-dependent NAD+ glycohydrolase activity. A three-step purification procedure was developed involving (1) precipitation with 40% (NH4)2SO4, (2) binding to a cysteine-Sepharose affinity column, and (3) binding to an NAD+ affinity column. PAGE showed a single band of M(r) 45,000. The enzyme had been purified 47,000-fold and had a specific activity of 1900 nmol nicotinamide released/min per mg. A study of the kinetic properties of this enzyme showed saturation kinetics for cysteine (Km = 4.0 mM). The ability of this enzyme to ADP-ribosylate protein was investigated using re-sealed inverted bovine erythrocyte ghosts. Incubation of the purified enzyme with erythrocyte ghosts and [adenylate-32P]NAD+ led to the enhanced dose-dependent labelling of several proteins, a doublet of high M(r) and proteins of M(r) 60,000, 55,000 and 29,000, identified by autoradiography of separated proteins on SDS/PAGE. The enzyme-catalysed labelling of the major component at M(r) 55,000 was blocked by pre-treatment of the erythrocyte ghosts with N-ethymaleimide, a sulphydryl alkylating agent, and the label was released by mercuric ion, but not by hydroxylamine. These experiments suggested that a cysteine residue on the target protein had been mono-ADP-ribosylated. This supposition was further supported by identification of the mercf1p4ion-released radiolabelled product as ADP-ribose by HPLC, and the observation that free ADP-ribose was unable to modify the membrane target protein directly.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALIVISATOS S. G., KASHKET S., DENSTEDT O. F. The metabolism of the erythrocyte. IX. Diphosphopyridine nucleotidase of erythrocytes. Can J Biochem Physiol. 1956 Jan;34(1):46–60. [PubMed] [Google Scholar]
- Artman M., Seeley R. J. Nicotinamide adenine dinucleotide splitting enzyme: a characteristic of the mouse macrophage. Science. 1978 Dec 22;202(4374):1293–1295. doi: 10.1126/science.214853. [DOI] [PubMed] [Google Scholar]
- Bernofsky C., Amamoo D. G. ADP-ribosylation of isolated rat islets of Langerhans. Biochem Biophys Res Commun. 1984 Jan 30;118(2):663–668. doi: 10.1016/0006-291x(84)91354-8. [DOI] [PubMed] [Google Scholar]
- Brattain M. G., Marks M. E., Pretlow T. G., 2nd The purification of horseradish peroxidase by affinity chromatography on Sepharose--bound concanavalin A1,2. Anal Biochem. 1976 May 7;72:346–352. doi: 10.1016/0003-2697(76)90540-6. [DOI] [PubMed] [Google Scholar]
- Brüne B., Lapetina E. G. Properties of a novel nitric oxide-stimulated ADP-ribosyltransferase. Arch Biochem Biophys. 1990 Jun;279(2):286–290. doi: 10.1016/0003-9861(90)90493-i. [DOI] [PubMed] [Google Scholar]
- Cervantes-Laurean D., Minter D. E., Jacobson E. L., Jacobson M. K. Protein glycation by ADP-ribose: studies of model conjugates. Biochemistry. 1993 Feb 16;32(6):1528–1534. doi: 10.1021/bi00057a017. [DOI] [PubMed] [Google Scholar]
- Coggins P. J., McLean K., Nagy A., Zwiers H. ADP-ribosylation of the neuronal phosphoprotein B-50/GAP-43. J Neurochem. 1993 Jan;60(1):368–371. doi: 10.1111/j.1471-4159.1993.tb05862.x. [DOI] [PubMed] [Google Scholar]
- Dimmeler S., Brüne B. Nitric oxide preferentially stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase compared to alcohol or lactate dehydrogenase. FEBS Lett. 1993 Jan 2;315(1):21–24. doi: 10.1016/0014-5793(93)81124-i. [DOI] [PubMed] [Google Scholar]
- Frei B., Richter C. Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry. 1988 Jan 26;27(2):529–535. doi: 10.1021/bi00402a004. [DOI] [PubMed] [Google Scholar]
- Graves C. B., McDonald J. M. Regulation of endogenously catalyzed ADP-ribosylation in adipocyte plasma membranes by Ca2+ and calmodulin. Cell Calcium. 1985 Dec;6(6):491–501. doi: 10.1016/0143-4160(85)90024-7. [DOI] [PubMed] [Google Scholar]
- Iglewski W. J., Lee H., Muller P. ADP-ribosyltransferase from beef liver which ADP-ribosylates elongation factor-2. FEBS Lett. 1984 Jul 23;173(1):113–118. doi: 10.1016/0014-5793(84)81028-5. [DOI] [PubMed] [Google Scholar]
- Kaslow H. R., Johnson G. L., Brothers V. M., Bourne H. R. A regulatory component of adenylate cyclase from human erythrocyte membranes. J Biol Chem. 1980 Apr 25;255(8):3736–3741. [PubMed] [Google Scholar]
- Kaslow H. R., Lim L. K., Moss J., Lesikar D. D. Structure-activity analysis of the activation of pertussis toxin. Biochemistry. 1987 Jan 13;26(1):123–127. doi: 10.1021/bi00375a018. [DOI] [PubMed] [Google Scholar]
- Kots AYa, Sergienko E. A., Bulargina T. V., Severin E. S. Glyceraldehyde-3-phosphate activates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. FEBS Lett. 1993 Jun 7;324(1):33–36. doi: 10.1016/0014-5793(93)81526-6. [DOI] [PubMed] [Google Scholar]
- Krantz M. J., Lee Y. C. Quantitative hydrolysis of thioglycosides. Anal Biochem. 1976 Mar;71(1):318–321. doi: 10.1016/0003-2697(76)90044-0. [DOI] [PubMed] [Google Scholar]
- Leno G. H., Ledford B. E. Reversible ADP-ribosylation of the 78 kDa glucose-regulated protein. FEBS Lett. 1990 Dec 10;276(1-2):29–33. doi: 10.1016/0014-5793(90)80499-9. [DOI] [PubMed] [Google Scholar]
- Lobban M. D., van Heyningen S. Thiol reagents are substrates for the ADP-ribosyltransferase activity of pertussis toxin. FEBS Lett. 1988 Jun 20;233(2):229–232. doi: 10.1016/0014-5793(88)80432-0. [DOI] [PubMed] [Google Scholar]
- Mattera R., Codina J., Sekura R. D., Birnbaumer L. The interaction of nucleotides with pertussis toxin. Direct evidence for a nucleotide binding site on the toxin regulating the rate of ADP-ribosylation of Ni, the inhibitory regulatory component of adenylyl cyclase. J Biol Chem. 1986 Aug 25;261(24):11173–11179. [PubMed] [Google Scholar]
- McDonald L. J., Wainschel L. A., Oppenheimer N. J., Moss J. Amino acid-specific ADP-ribosylation: structural characterization and chemical differentiation of ADP-ribose-cysteine adducts formed nonenzymatically and in a pertussis toxin-catalyzed reaction. Biochemistry. 1992 Dec 1;31(47):11881–11887. doi: 10.1021/bi00162a029. [DOI] [PubMed] [Google Scholar]
- Moss J., Stanley S. J., Watkins P. A. Isolation and properties of an NAD- and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem. 1980 Jun 25;255(12):5838–5840. [PubMed] [Google Scholar]
- Moss J., Vaughan M. Toxin ADP-ribosyltransferases that act on adenylate cyclase systems. Methods Enzymol. 1984;106:411–418. doi: 10.1016/0076-6879(84)06044-4. [DOI] [PubMed] [Google Scholar]
- Ribeiro-Neto F. A., Mattera R., Hildebrandt J. D., Codina J., Field J. B., Birnbaumer L., Sekura R. D. ADP-ribosylation of membrane components by pertussis and cholera toxin. Methods Enzymol. 1985;109:566–572. doi: 10.1016/0076-6879(85)09115-7. [DOI] [PubMed] [Google Scholar]
- Richter C., Winterhalter K. H., Baumhüter S., Lötscher H. R., Moser B. ADP-ribosylation in inner membrane of rat liver mitochondria. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3188–3192. doi: 10.1073/pnas.80.11.3188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka Y., Yoshihara K., Kamiya T. Enzymic and nonenzymic mono ADP-ribosylation of proteins in skeletal muscle. Biochem Biophys Res Commun. 1989 Sep 15;163(2):1063–1070. doi: 10.1016/0006-291x(89)92329-2. [DOI] [PubMed] [Google Scholar]
- Tanigawa Y., Tsuchiya M., Imai Y., Shimoyama M. ADP-ribosyltransferase from hen liver nuclei. Purification and characterization. J Biol Chem. 1984 Feb 10;259(3):2022–2029. [PubMed] [Google Scholar]
- Tanuma S., Kawashima K., Endo H. An NAD:cysteine ADP-ribosyltransferase is present in human erythrocytes. J Biochem. 1987 Mar;101(3):821–824. doi: 10.1093/jb/101.3.821. [DOI] [PubMed] [Google Scholar]
- Van Dop C., Tsubokawa M., Bourne H. R., Ramachandran J. Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J Biol Chem. 1984 Jan 25;259(2):696–698. [PubMed] [Google Scholar]
- Vitti P., De Wolf M. J., Acquaviva A. M., Epstein M., Kohn L. D. Thyrotropin stimulation of the ADP-ribosyltransferase activity of bovine thyroid membranes. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1525–1529. doi: 10.1073/pnas.79.5.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West R. E., Jr, Moss J., Vaughan M., Liu T., Liu T. Y. Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J Biol Chem. 1985 Nov 25;260(27):14428–14430. [PubMed] [Google Scholar]
- Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
- Zolkiewska A., Nightingale M. S., Moss J. Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11352–11356. doi: 10.1073/pnas.89.23.11352. [DOI] [PMC free article] [PubMed] [Google Scholar]



