Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Sep 15;310(Pt 3):989–995. doi: 10.1042/bj3100989

Solubilization and separation of two distinct carnitine acyltransferases from hepatic microsomes: characterization of the malonyl-CoA-sensitive enzyme.

N M Broadway 1, E D Saggerson 1
PMCID: PMC1135993  PMID: 7575437

Abstract

Conditions have been developed for the solubilization of hepatic microsomal carnitine acyltransferase activity in good yield, with excellent long-term stability and with retention of malonyl-CoA sensitivity. Solubilized microsomal carnitine acyltransferase activity can be separated into malonyl-CoA-sensitive and -insensitive activities either by gel filtration on Superdex 200 or by anion-exchange chromatography on Resource Q. On gel filtration the apparent molecular masses of the malonyl-CoA-sensitive and -insensitive activities are approx. 300 kDa and 60 kDa respectively. The malonyl-CoA-sensitive and -insensitive activities have different fatty-acyl-chain-length specificities and different stabilities in the detergent octyl glucoside. Together these findings indicate that the malonyl-CoA-sensitive and -insensitive activities are due to different enzymes. The malonyl-CoA sensitivity of the inhibitable enzyme is markedly increased on reconstitution into soybean L-alpha-lecithin liposomes, demonstrating that phospholipids play a crucial role in the inhibition by this metabolite. Evidence is also provided that the malonyl-CoA-sensitive microsomal carnitine acyltransferase is a different enzyme from the malonyl-CoA-sensitive carnitine palmitoyltransferase found in the mitochondrial outer membrane. The possible physiological role of the two microsomal acyltransferases is discussed.

Full text

PDF
989

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartlett S. M., Gibbons G. F. Short- and longer-term regulation of very-low-density lipoprotein secretion by insulin, dexamethasone and lipogenic substrates in cultured hepatocytes. A biphasic effect of insulin. Biochem J. 1988 Jan 1;249(1):37–43. doi: 10.1042/bj2490037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  3. Björnsson O. G., Duerden J. M., Bartlett S. M., Sparks J. D., Sparks C. E., Gibbons G. F. The role of pancreatic hormones in the regulation of lipid storage, oxidation and secretion in primary cultures of rat hepatocytes. Short- and long-term effects. Biochem J. 1992 Jan 15;281(Pt 2):381–386. doi: 10.1042/bj2810381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brady P. S., Ramsay R. R., Brady L. J. Regulation of the long-chain carnitine acyltransferases. FASEB J. 1993 Aug;7(11):1039–1044. doi: 10.1096/fasebj.7.11.8370473. [DOI] [PubMed] [Google Scholar]
  5. Byrne C. D., Brindle N. P., Wang T. W., Hales C. N. Interaction of non-esterified fatty acid and insulin in control of triacylglycerol secretion by Hep G2 cells. Biochem J. 1991 Nov 15;280(Pt 1):99–104. doi: 10.1042/bj2800099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byrne C. D., Wang T. W., Hales C. N. Control of Hep G2-cell triacylglycerol and apolipoprotein B synthesis and secretion by polyunsaturated non-esterified fatty acids and insulin. Biochem J. 1992 Nov 15;288(Pt 1):101–107. doi: 10.1042/bj2880101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chung C. D., Bieber L. L. Properties of the medium chain/long chain carnitine acyltransferase purified from rat liver microsomes. J Biol Chem. 1993 Feb 25;268(6):4519–4524. [PubMed] [Google Scholar]
  8. Chung C. H., Woldegiorgis G., Dai G., Shrago E., Bieber L. L. Conferral of malonyl coenzyme A sensitivity to purified rat heart mitochondrial carnitine palmitoyltransferase. Biochemistry. 1992 Oct 13;31(40):9777–9783. doi: 10.1021/bi00155a034. [DOI] [PubMed] [Google Scholar]
  9. Derrick J. P., Ramsay R. R. L-carnitine acyltransferase in intact peroxisomes is inhibited by malonyl-CoA. Biochem J. 1989 Sep 15;262(3):801–806. doi: 10.1042/bj2620801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duerden J. M., Bartlett S. M., Gibbons G. F. Regulation of very-low-density-lipoprotein lipid secretion in hepatocyte cultures derived from diabetic animals. Biochem J. 1989 Aug 15;262(1):313–319. doi: 10.1042/bj2620313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Esser V., Britton C. H., Weis B. C., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J Biol Chem. 1993 Mar 15;268(8):5817–5822. [PubMed] [Google Scholar]
  12. Ghadiminejad I., Saggerson D. Cholate separates the catalytic and malonyl-CoA-binding components of carnitine palmitoyltransferase from liver outer mitochondrial membranes. Biochim Biophys Acta. 1991 May 8;1083(2):166–172. doi: 10.1016/0005-2760(91)90038-j. [DOI] [PubMed] [Google Scholar]
  13. Ghadiminejad I., Saggerson D. Use of mitochondrial inner membrane proteins and phospholipids to facilitate disengagement of the catalytic and malonyl-CoA binding components of carnitine palmitoyltransferase from liver mitochondrial outer membranes. Int J Biochem. 1992 Apr;24(4):573–577. doi: 10.1016/0020-711x(92)90329-y. [DOI] [PubMed] [Google Scholar]
  14. Ghadiminejad I., Saggerson E. D. The relationship of rat liver overt carnitine palmitoyltransferase to the mitochondrial malonyl-CoA binding entity and to the latent palmitoyltransferase. Biochem J. 1990 Sep 15;270(3):787–794. doi: 10.1042/bj2700787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gibbons G. F., Bartlett S. M., Sparks C. E., Sparks J. D. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem J. 1992 Nov 1;287(Pt 3):749–753. doi: 10.1042/bj2870749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glick B. S., Rothman J. E. Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature. 1987 Mar 19;326(6110):309–312. doi: 10.1038/326309a0. [DOI] [PubMed] [Google Scholar]
  17. Hoeg J. M., Meng M. S., Ronan R., Demosky S. J., Jr, Fairwell T., Brewer H. B., Jr Apolipoprotein B synthesized by Hep G2 cells undergoes fatty acid acylation. J Lipid Res. 1988 Sep;29(9):1215–1220. [PubMed] [Google Scholar]
  18. Huang G., Lee D. M., Singh S. Identification of the thiol ester linked lipids in apolipoprotein B. Biochemistry. 1988 Mar 8;27(5):1395–1400. doi: 10.1021/bi00405a001. [DOI] [PubMed] [Google Scholar]
  19. Kaufman J. F., Krangel M. S., Strominger J. L. Cysteines in the transmembrane region of major histocompatibility complex antigens are fatty acylated via thioester bonds. J Biol Chem. 1984 Jun 10;259(11):7230–7238. [PubMed] [Google Scholar]
  20. Kerner J., Zaluzec E., Gage D., Bieber L. L. Characterization of the malonyl-CoA-sensitive carnitine palmitoyltransferase (CPTo) of a rat heart mitochondrial particle. Evidence that the catalytic unit is CPTi. J Biol Chem. 1994 Mar 18;269(11):8209–8219. [PubMed] [Google Scholar]
  21. Kolodziej M. P., Zammit V. A. Sensitivity of inhibition of rat liver mitochondrial outer-membrane carnitine palmitoyltransferase by malonyl-CoA to chemical- and temperature-induced changes in membrane fluidity. Biochem J. 1990 Dec 1;272(2):421–425. doi: 10.1042/bj2720421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lawrence J. B., Moreau P., Cassagne C., Morré D. J. Acyl transfer reactions associated with cis Golgi apparatus of rat liver. Biochim Biophys Acta. 1994 Jan 3;1210(2):146–150. doi: 10.1016/0005-2760(94)90114-7. [DOI] [PubMed] [Google Scholar]
  24. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lilly K., Bugaisky G. E., Umeda P. K., Bieber L. L. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive. Arch Biochem Biophys. 1990 Jul;280(1):167–174. doi: 10.1016/0003-9861(90)90532-4. [DOI] [PubMed] [Google Scholar]
  26. Magee A. I., Schlesinger M. J. Fatty acid acylation of eucaryotic cell membrane proteins. Biochim Biophys Acta. 1982 Nov 30;694(3):279–289. doi: 10.1016/0304-4157(82)90008-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Markwell M. A., Tolbert N. E., Bieber L. L. Comparison of the carnitine acyltransferase activites from rat liver peroxisomes and microsomes. Arch Biochem Biophys. 1976 Oct;176(2):497–488. doi: 10.1016/0003-9861(76)90191-0. [DOI] [PubMed] [Google Scholar]
  28. Miyazawa S., Ozasa H., Osumi T., Hashimoto T. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem. 1983 Aug;94(2):529–542. doi: 10.1093/oxfordjournals.jbchem.a134384. [DOI] [PubMed] [Google Scholar]
  29. Mooney R. A., Lane M. D. Formation and turnover of triglyceride-rich vesicles in the chick liver cell. Effects of cAMP and carnitine on triglyceride mobilization and conversion to ketones. J Biol Chem. 1981 Nov 25;256(22):11724–11733. [PubMed] [Google Scholar]
  30. Murthy M. S., Bieber L. L. Purification of the medium-chain/long-chain (COT/CPT) carnitine acyltransferase of rat liver microsomes. Protein Expr Purif. 1992 Feb;3(1):75–79. doi: 10.1016/1046-5928(92)90059-6. [DOI] [PubMed] [Google Scholar]
  31. Murthy M. S., Pande S. V. A stress-regulated protein, GRP58, a member of thioredoxin superfamily, is a carnitine palmitoyltransferase isoenzyme. Biochem J. 1994 Nov 15;304(Pt 1):31–34. doi: 10.1042/bj3040031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Murthy M. S., Pande S. V. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987 Jan;84(2):378–382. doi: 10.1073/pnas.84.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Murthy M. S., Pande S. V. Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. J Biol Chem. 1994 Jul 15;269(28):18283–18286. [PubMed] [Google Scholar]
  34. Murthy M. S., Pande S. V. Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987 Dec 15;248(3):727–733. doi: 10.1042/bj2480727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mynatt R. L., Lappi M. D., Cook G. A. Myocardial carnitine palmitoyltransferase of the mitochondrial outer membrane is not altered by fasting. Biochim Biophys Acta. 1992 Sep 22;1128(1):105–111. doi: 10.1016/0005-2760(92)90263-u. [DOI] [PubMed] [Google Scholar]
  36. Pfanner N., Orci L., Glick B. S., Amherdt M., Arden S. R., Malhotra V., Rothman J. E. Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell. 1989 Oct 6;59(1):95–102. doi: 10.1016/0092-8674(89)90872-6. [DOI] [PubMed] [Google Scholar]
  37. Polokoff M. A., Bell R. M. Limited palmitoyl-CoA penetration into microsomal vesicles as evidenced by a highly latent ethanol acyltransferase activity. J Biol Chem. 1978 Oct 25;253(20):7173–7178. [PubMed] [Google Scholar]
  38. Ramsay R. R., Arduini A. The carnitine acyltransferases and their role in modulating acyl-CoA pools. Arch Biochem Biophys. 1993 May;302(2):307–314. doi: 10.1006/abbi.1993.1216. [DOI] [PubMed] [Google Scholar]
  39. Ramsay R. R. The soluble carnitine palmitoyltransferase from bovine liver. A comparison with the enzymes from peroxisomes and from the mitochondrial inner membrane. Biochem J. 1988 Jan 1;249(1):239–245. doi: 10.1042/bj2490239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shepherd J. C., Schumacher T. N., Ashton-Rickardt P. G., Imaeda S., Ploegh H. L., Janeway C. A., Jr, Tonegawa S. TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell. 1993 Aug 13;74(3):577–584. doi: 10.1016/0092-8674(93)80058-m. [DOI] [PubMed] [Google Scholar]
  42. Wiggins D., Gibbons G. F. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas. Biochem J. 1992 Jun 1;284(Pt 2):457–462. doi: 10.1042/bj2840457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Woeltje K. F., Esser V., Weis B. C., Cox W. F., Schroeder J. G., Liao S. T., Foster D. W., McGarry J. D. Inter-tissue and inter-species characteristics of the mitochondrial carnitine palmitoyltransferase enzyme system. J Biol Chem. 1990 Jun 25;265(18):10714–10719. [PubMed] [Google Scholar]
  44. Woldegiorgis G., Fibich B., Contreras L., Shrago E. Restoration of malonyl-CoA sensitivity of soluble rat liver mitochondria carnitine palmitoyltransferase by reconstitution with a partially purified malonyl-CoA binding protein. Arch Biochem Biophys. 1992 Jun;295(2):348–351. doi: 10.1016/0003-9861(92)90527-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES