Abstract
The use of digitonin to permeabilize the plasma membrane of Trypanosoma cruzi allowed the identification of a non-mitochondrial nigericin- or bafilomycin A1-sensitive Ca(2+)-uptake mechanism. Proton uptake, as detected by ATP-dependent Acridine Orange accumulation, was also demonstrated in these permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles. This latter process was inhibited (and reversed) by bafilomycin A1, nigericin and NH4Cl in different stages of T. cruzi. Ca2+ released Acridine Orange from permeabilized cells, suggesting that the dye and Ca2+ were being accumulated in the same acidic compartment and that Ca2+ was taken up in exchange for protons. Addition of bafilomycin A1 (5 microM), nigericin (1 microM) or carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP; 1 microM) to fura 2-loaded epimastigotes increased their intracellular Ca2+ concentration ([Ca2+]i). Although this effect was more noticeable in the presence of extracellular Ca2+, it was also observed in its absence. Addition of NH4Cl (10-40 mM) to different stages of T. cruzi, in the nominal absence of extracellular Ca2+ to preclude Ca2+ entry, increased both [Ca2+]i in fura 2-loaded cells, and intracellular pH (pHi) in 2',7'-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein acetoxymethyl ester (BCECF)-loaded cells. Treatment of the cells with the Ca2+ ionophore ionomycin under similar conditions (nominal absence of extracellular Ca2+) resulted in an increase in [Ca2+]i and a significantly higher increase in [Ca2+]i after addition of NH4Cl, nigericin or bafilomycin A1, all agents which increase the pH of acidic compartments and make ionomycin more effective as a Ca(2+)-releasing ionophore. Similar results were obtained when the order of additions was reversed. Taking into account the relative importance of the ionomycin-releasable and the ionomycin plus NH4Cl-releasable Ca2+ pools, it is apparent that most of the Ca2+ stored in different stages of T. cruzi is present in the acidic compartment thus identified. Taken together, these results are consistent with the presence of a Ca2+/H+ exchange system in an acidic vacuole, which we have named the 'acidocalcisome' and which appears to be a unique organelle present in trypanosomatids.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
- Coppens I., Opperdoes F. R., Courtoy P. J., Baudhuin P. Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool. 1987 Nov;34(4):465–473. doi: 10.1111/j.1550-7408.1987.tb03216.x. [DOI] [PubMed] [Google Scholar]
- Dean R. T., Jessup W., Roberts C. R. Effects of exogenous amines on mammalian cells, with particular reference to membrane flow. Biochem J. 1984 Jan 1;217(1):27–40. doi: 10.1042/bj2170027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Docampo R. Calcium homeostasis in Trypanosoma cruzi. Biol Res. 1993;26(1-2):189–196. [PubMed] [Google Scholar]
- Docampo R., Moreno S. N., Mason R. P. Generation of free radical metabolites and superoxide anion by the calcium indicators arsenazo III, antipyrylazo III, and murexide in rat liver microsomes. J Biol Chem. 1983 Dec 25;258(24):14920–14925. [PubMed] [Google Scholar]
- Docampo R., Moreno S. N., Vercesi A. E. Effect of thapsigargin on calcium homeostasis in Trypanosoma cruzi trypomastigotes and epimastigotes. Mol Biochem Parasitol. 1993 Jun;59(2):305–313. doi: 10.1016/0166-6851(93)90228-p. [DOI] [PubMed] [Google Scholar]
- Docampo R., Vercesi A. E. Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ. J Biol Chem. 1989 Jan 5;264(1):108–111. [PubMed] [Google Scholar]
- Docampo R., Vercesi A. E. Characteristics of Ca2+ transport by Trypanosoma cruzi mitochondria in situ. Arch Biochem Biophys. 1989 Jul;272(1):122–129. doi: 10.1016/0003-9861(89)90202-6. [DOI] [PubMed] [Google Scholar]
- Dvorak J. A., Engel J. C., Leapman R. D., Swyt C. R., Pella P. A. Trypanosoma cruzi: elemental composition heterogeneity of cloned stocks. Mol Biochem Parasitol. 1988 Oct;31(1):19–26. doi: 10.1016/0166-6851(88)90141-7. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
- Hager K. M., Pierce M. A., Moore D. R., Tytler E. M., Esko J. D., Hajduk S. L. Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes. J Cell Biol. 1994 Jul;126(1):155–167. doi: 10.1083/jcb.126.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J., Zhu Q., Clarke M. Proton pumps populate the contractile vacuoles of Dictyostelium amoebae. J Cell Biol. 1993 Jun;121(6):1311–1327. doi: 10.1083/jcb.121.6.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linder J. C., Staehelin L. A. A novel model for fluid secretion by the trypanosomatid contractile vacuole apparatus. J Cell Biol. 1979 Nov;83(2 Pt 1):371–382. doi: 10.1083/jcb.83.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu C., Hermann T. E. Characterization of ionomycin as a calcium ionophore. J Biol Chem. 1978 Sep 10;253(17):5892–5894. [PubMed] [Google Scholar]
- Lorenz P., Barth P. E., Rudin W., Betschart B. Importance of acidic intracellular compartments in the lysis of Trypanosoma brucei brucei by normal human serum. Trans R Soc Trop Med Hyg. 1994 Jul-Aug;88(4):487–488. doi: 10.1016/0035-9203(94)90443-x. [DOI] [PubMed] [Google Scholar]
- Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
- Moreno S. N., Mason R. P., Docampo R. Reduction of the metallochromic indicators arsenazo III and antipyrylazo III to their free radical metabolites by cytoplasmic enzymes. FEBS Lett. 1985 Jan 28;180(2):229–233. doi: 10.1016/0014-5793(85)81076-0. [DOI] [PubMed] [Google Scholar]
- Moreno S. N., Silva J., Vercesi A. E., Docampo R. Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J Exp Med. 1994 Oct 1;180(4):1535–1540. doi: 10.1084/jem.180.4.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno S. N., Vercesi A. E., Pignataro O. P., Docampo R. Calcium homeostasis in Trypanosoma cruzi amastigotes: presence of inositol phosphates and lack of an inositol 1,4,5-trisphosphate-sensitive calcium pool. Mol Biochem Parasitol. 1992 Jun;52(2):251–261. doi: 10.1016/0166-6851(92)90057-q. [DOI] [PubMed] [Google Scholar]
- Nadal-Ginard B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 1978 Nov;15(3):855–864. doi: 10.1016/0092-8674(78)90270-2. [DOI] [PubMed] [Google Scholar]
- Negulescu P. A., Machen T. E. Intracellular ion activities and membrane transport in parietal cells measured with fluorescent dyes. Methods Enzymol. 1990;192:38–81. doi: 10.1016/0076-6879(90)92062-i. [DOI] [PubMed] [Google Scholar]
- Nolan D. P., Reverlard P., Pays E. Overexpression and characterization of a gene for a Ca(2+)-ATPase of the endoplasmic reticulum in Trypanosoma brucei. J Biol Chem. 1994 Oct 21;269(42):26045–26051. [PubMed] [Google Scholar]
- Palmgren M. G. Acridine orange as a probe for measuring pH gradients across membranes: mechanism and limitations. Anal Biochem. 1991 Feb 1;192(2):316–321. doi: 10.1016/0003-2697(91)90542-2. [DOI] [PubMed] [Google Scholar]
- Philosoph H., Zilberstein D. Regulation of intracellular calcium in promastigotes of the human protozoan parasite Leishmania donovani. J Biol Chem. 1989 Jun 25;264(18):10420–10424. [PubMed] [Google Scholar]
- Rooney E. K., Gross J. D. ATP-driven Ca2+/H+ antiport in acid vesicles from Dictyostelium. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8025–8029. doi: 10.1073/pnas.89.17.8025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruben L., Hutchinson A., Moehlman J. Calcium homeostasis in Trypanosoma brucei. Identification of a pH-sensitive non-mitochondrial calcium pool. J Biol Chem. 1991 Dec 25;266(36):24351–24358. [PubMed] [Google Scholar]
- Rudnick G. ATP-driven H+ pumping into intracellular organelles. Annu Rev Physiol. 1986;48:403–413. doi: 10.1146/annurev.ph.48.030186.002155. [DOI] [PubMed] [Google Scholar]
- Scarpa A. Measurements of cation transport with metallochromic indicators. Methods Enzymol. 1979;56:301–338. doi: 10.1016/0076-6879(79)56030-3. [DOI] [PubMed] [Google Scholar]
- Schmatz D. M., Murray P. K. Cultivation of Trypanosoma cruzi in irradiated muscle cells: improved synchronization and enhanced trypomastigote production. Parasitology. 1982 Aug;85(Pt 1):115–125. doi: 10.1017/s0031182000054202. [DOI] [PubMed] [Google Scholar]
- Soares M. J., Souto-Padrón T., De Souza W. Identification of a large pre-lysosomal compartment in the pathogenic protozoon Trypanosoma cruzi. J Cell Sci. 1992 May;102(Pt 1):157–167. doi: 10.1242/jcs.102.1.157. [DOI] [PubMed] [Google Scholar]
- Soares M. J., de Souza W. Endocytosis of gold-labeled proteins and LDL by Trypanosoma cruzi. Parasitol Res. 1991;77(6):461–468. doi: 10.1007/BF00928410. [DOI] [PubMed] [Google Scholar]
- Thévenod F., Dehlinger-Kremer M., Kemmer T. P., Christian A. L., Potter B. V., Schulz I. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and -insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells. J Membr Biol. 1989 Jul;109(2):173–186. doi: 10.1007/BF01870856. [DOI] [PubMed] [Google Scholar]
- Thévenod F., Schulz I. H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland. Am J Physiol. 1988 Oct;255(4 Pt 1):G429–G440. doi: 10.1152/ajpgi.1988.255.4.G429. [DOI] [PubMed] [Google Scholar]
- Vercesi A. E., Bernardes C. F., Hoffmann M. E., Gadelha F. R., Docampo R. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J Biol Chem. 1991 Aug 5;266(22):14431–14434. [PubMed] [Google Scholar]
- Vercesi A. E., Hoffmann M. E., Bernardes C. F., Docampo R. Regulation of intracellular calcium homeostasis in Trypanosoma cruzi. Effects of calmidazolium and trifluoperazine. Cell Calcium. 1991 May;12(5):361–369. doi: 10.1016/0143-4160(91)90052-g. [DOI] [PubMed] [Google Scholar]
- Vercesi A. E., Moreno S. N., Docampo R. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J. 1994 Nov 15;304(Pt 1):227–233. doi: 10.1042/bj3040227. [DOI] [PMC free article] [PubMed] [Google Scholar]

