Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Nov 1;311(Pt 3):717–721. doi: 10.1042/bj3110717

Human diadenosine 5',5"'-P1,P4-tetraphosphate pyrophosphohydrolase is a member of the MutT family of nucleotide pyrophosphatases.

N M Thorne 1, S Hankin 1, M C Wilkinson 1, C Nuñez 1, R Barraclough 1, A G McLennan 1
PMCID: PMC1136061  PMID: 7487923

Abstract

The cDNA and derived amino acid sequence of human diadenosine 5',5"'-P1,P4-tetraphosphate pyrophosphohydrolase have been determined with the aid of the GenBank Expressed Sequence Tag database. This enzyme possesses a modification of the MutT sequence motif found in certain nucleotide pyrophosphatases. It is unrelated to the enzymes of diadenosine tetraphosphate catabolism found in prokaryotes and fungi.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeygunawardana C., Weber D. J., Frick D. N., Bessman M. J., Mildvan A. S. Sequence-specific assignments of the backbone 1H, 13C, and 15N resonances of the MutT enzyme by heteronuclear multidimensional NMR. Biochemistry. 1993 Dec 7;32(48):13071–13080. doi: 10.1021/bi00211a017. [DOI] [PubMed] [Google Scholar]
  2. Azakami H., Sugino H., Murooka Y. Cloning and nucleotide sequence of a negative regulator gene for Klebsiella aerogenes arylsulfatase synthesis and identification of the gene as folA. J Bacteriol. 1992 Apr;174(7):2344–2351. doi: 10.1128/jb.174.7.2344-2351.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker J. C., Jacobson M. K. Alteration of adenyl dinucleotide metabolism by environmental stress. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2350–2352. doi: 10.1073/pnas.83.8.2350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnes L. D., Culver C. A. Isolation and characterization of diadenosine 5',5"'-P1,P4-tetraphosphate pyrophosphohydrolase from Physarum polycephalum. Biochemistry. 1982 Nov 23;21(24):6123–6128. doi: 10.1021/bi00267a015. [DOI] [PubMed] [Google Scholar]
  5. Baxi M. D., McLennan A. G., Vishwanatha J. K. Characterization of the HeLa cell DNA polymerase alpha-associated Ap4A binding protein by photoaffinity labeling. Biochemistry. 1994 Dec 6;33(48):14601–14607. doi: 10.1021/bi00252a028. [DOI] [PubMed] [Google Scholar]
  6. Brevet A., Chen J., Fromant M., Blanquet S., Plateau P. Isolation and characterization of a dinucleoside triphosphatase from Saccharomyces cerevisiae. J Bacteriol. 1991 Sep;173(17):5275–5279. doi: 10.1128/jb.173.17.5275-5279.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brevet A., Chen J., Lévêque F., Plateau P., Blanquet S. In vivo synthesis of adenylylated bis(5'-nucleosidyl) tetraphosphates (Ap4N) by Escherichia coli aminoacyl-tRNA synthetases. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8275–8279. doi: 10.1073/pnas.86.21.8275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bullions L. C., Méjean V., Claverys J. P., Bessman M. J. Purification of the MutX protein of Streptococcus pneumoniae, a homologue of Escherichia coli MutT. Identification of a novel catalytic domain for nucleoside triphosphate pyrophosphohydrolase activity. J Biol Chem. 1994 Apr 22;269(16):12339–12344. [PubMed] [Google Scholar]
  9. Dixon L. K., Twigg S. R., Baylis S. A., Vydelingum S., Bristow C., Hammond J. M., Smith G. L. Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). J Gen Virol. 1994 Jul;75(Pt 7):1655–1684. doi: 10.1099/0022-1317-75-7-1655. [DOI] [PubMed] [Google Scholar]
  10. Dixon R. M., Lowe G. Synthesis of (Rp,Rp)-P1,P4-Bis(5'-adenosyl)-1[17O,18O2],4[17O,18O2] tetraphosphate from (Sp,Sp)-P1,P4-Bis(5'-adenosyl)-1[thio-18O2], 4[thio-18O2]tetraphosphate with retention at phosphorus and the stereochemical course of hydrolysis by the unsymmetrical Ap4A phosphodiesterase from lupin seeds. J Biol Chem. 1989 Feb 5;264(4):2069–2074. [PubMed] [Google Scholar]
  11. Farr S. B., Arnosti D. N., Chamberlin M. J., Ames B. N. An apaH mutation causes AppppA to accumulate and affects motility and catabolite repression in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5010–5014. doi: 10.1073/pnas.86.13.5010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frick D. N., Bessman M. J. Cloning, purification, and properties of a novel NADH pyrophosphatase. Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes. J Biol Chem. 1995 Jan 27;270(4):1529–1534. doi: 10.1074/jbc.270.4.1529. [DOI] [PubMed] [Google Scholar]
  13. Frick D. N., Weber D. J., Abeygunawardana C., Gittis A. G., Bessman M. J., Mildvan A. S. NMR studies of the conformations and location of nucleotides bound to the Escherichia coli MutT enzyme. Biochemistry. 1995 Apr 25;34(16):5577–5586. doi: 10.1021/bi00016a032. [DOI] [PubMed] [Google Scholar]
  14. García-Agúndez J., Cameselle J. C., Costas M. J., Sillero M. A., Sillero A. Particulate diadenosine 5',5"'-P1,P3-triphosphate hydrolases in rat brain: two specific dinucleoside triphosphatases and two phosphodiesterase I-like hydrolases. Biochim Biophys Acta. 1991 Mar 4;1073(2):402–409. doi: 10.1016/0304-4165(91)90149-b. [DOI] [PubMed] [Google Scholar]
  15. Henikoff S., Henikoff J. G. Protein family classification based on searching a database of blocks. Genomics. 1994 Jan 1;19(1):97–107. doi: 10.1006/geno.1994.1018. [DOI] [PubMed] [Google Scholar]
  16. Jakubowski H., Guranowski A. Enzymes hydrolyzing ApppA and/or AppppA in higher plants. Purification and some properties of diadenosine triphosphatase, diadenosine tetraphosphatase, and phosphodiesterase from yellow lupin (Lupinus luteus) seeds. J Biol Chem. 1983 Aug 25;258(16):9982–9989. [PubMed] [Google Scholar]
  17. Kaushal V., Avila D. M., Hardies S. C., Barnes L. D. Sequencing and enhanced expression of the gene encoding diadenosine 5',5'''-P1, P4-tetraphosphate (Ap4A) phosphorylase in Saccharomyces cerevisiae. Gene. 1990 Oct 30;95(1):79–84. doi: 10.1016/0378-1119(90)90416-o. [DOI] [PubMed] [Google Scholar]
  18. Koonin E. V. A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. Nucleic Acids Res. 1993 Oct 11;21(20):4847–4847. doi: 10.1093/nar/21.20.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lazewska D., Starzyńska E., Guranowski A. Human placental (Asymmetrical) diadenosine 5',5'''-P1,P4-tetraphosphate hydrolase: purification to homogeneity and some properties. Protein Expr Purif. 1993 Feb;4(1):45–51. doi: 10.1006/prep.1993.1007. [DOI] [PubMed] [Google Scholar]
  21. Maki H., Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature. 1992 Jan 16;355(6357):273–275. doi: 10.1038/355273a0. [DOI] [PubMed] [Google Scholar]
  22. McLennan A. G., Mayers E., Hankin S., Thorne N. M., Prescott M., Powls R. The green alga Scenedesmus obliquus contains both diadenosine 5',5'''-P1,P4-tetraphosphate (asymmetrical) pyrophosphohydrolase and phosphorylase activities. Biochem J. 1994 May 15;300(Pt 1):183–189. doi: 10.1042/bj3000183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McLennan A. G., Prescott M., Evershed R. P. Identification of point of specific enzymic cleavage of P1,P4-bis(5'-adenosyl) tetraphosphate by negative ion FAB mass spectrometry. Biomed Environ Mass Spectrom. 1989 Jun;18(6):450–452. doi: 10.1002/bms.1200180615. [DOI] [PubMed] [Google Scholar]
  24. Mechulam Y., Fromant M., Mellot P., Plateau P., Blanchin-Roland S., Fayat G., Blanquet S. Molecular cloning of the Escherichia coli gene for diadenosine 5',5'''-P1,P4-tetraphosphate pyrophosphohydrolase. J Bacteriol. 1985 Oct;164(1):63–69. doi: 10.1128/jb.164.1.63-69.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitchell S. J., Minnick M. F. Characterization of a two-gene locus from Bartonella bacilliformis associated with the ability to invade human erythrocytes. Infect Immun. 1995 Apr;63(4):1552–1562. doi: 10.1128/iai.63.4.1552-1562.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mulder W., Scholten I. H., van Roon H., Grivell L. A. Isolation and characterisation of the linked genes APA2 and QCR7, coding for Ap4A phosphorylase II and the 14 kDa subunit VII of the mitochondrial bc1-complex in the yeast Kluyveromyces lactis. Biochim Biophys Acta. 1994 Nov 22;1219(3):719–723. doi: 10.1016/0167-4781(94)90235-6. [DOI] [PubMed] [Google Scholar]
  27. Murphy P. R., Knee R. S. Identification and characterization of an antisense RNA transcript (gfg) from the human basic fibroblast growth factor gene. Mol Endocrinol. 1994 Jul;8(7):852–859. doi: 10.1210/mend.8.7.7984147. [DOI] [PubMed] [Google Scholar]
  28. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  29. Plateau P., Fromant M., Schmitter J. M., Blanquet S. Catabolism of bis(5'-nucleosidyl) tetraphosphates in Saccharomyces cerevisiae. J Bacteriol. 1990 Dec;172(12):6892–6899. doi: 10.1128/jb.172.12.6892-6899.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Prescott M., Milne A. D., McLennan A. G. Characterization of the bis(5'-nucleosidyl) tetraphosphate pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia. Biochem J. 1989 May 1;259(3):831–838. doi: 10.1042/bj2590831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Robinson A. K., de la Peña C. E., Barnes L. D. Isolation and characterization of diadenosine tetraphosphate (Ap4A) hydrolase from Schizosaccharomyces pombe. Biochim Biophys Acta. 1993 Feb 13;1161(2-3):139–148. doi: 10.1016/0167-4838(93)90207-8. [DOI] [PubMed] [Google Scholar]
  32. Rosenfeld J., Capdevielle J., Guillemot J. C., Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem. 1992 May 15;203(1):173–179. doi: 10.1016/0003-2697(92)90061-b. [DOI] [PubMed] [Google Scholar]
  33. Rost B., Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins. 1994 Nov;20(3):216–226. doi: 10.1002/prot.340200303. [DOI] [PubMed] [Google Scholar]
  34. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  35. Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S., Maki H., Sekiguchi M. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem. 1993 Nov 5;268(31):23524–23530. [PubMed] [Google Scholar]
  36. Schlüter H., Offers E., Brüggemann G., van der Giet M., Tepel M., Nordhoff E., Karas M., Spieker C., Witzel H., Zidek W. Diadenosine phosphates and the physiological control of blood pressure. Nature. 1994 Jan 13;367(6459):186–188. doi: 10.1038/367186a0. [DOI] [PubMed] [Google Scholar]
  37. Soares M. B., Bonaldo M. F., Jelene P., Su L., Lawton L., Efstratiadis A. Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9228–9232. doi: 10.1073/pnas.91.20.9228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takahagi M., Iwasaki H., Nakata A., Shinagawa H. Molecular analysis of the Escherichia coli ruvC gene, which encodes a Holliday junction-specific endonuclease. J Bacteriol. 1991 Sep;173(18):5747–5753. doi: 10.1128/jb.173.18.5747-5753.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Volk R., Köster M., Pöting A., Hartmann L., Knöchel W. An antisense transcript from the Xenopus laevis bFGF gene coding for an evolutionarily conserved 24 kd protein. EMBO J. 1989 Oct;8(10):2983–2988. doi: 10.1002/j.1460-2075.1989.tb08448.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weber D. J., Abeygunawardana C., Bessman M. J., Mildvan A. S. Secondary structure of the MutT enzyme as determined by NMR. Biochemistry. 1993 Dec 7;32(48):13081–13088. doi: 10.1021/bi00211a018. [DOI] [PubMed] [Google Scholar]
  42. Weber D. J., Bhatnagar S. K., Bullions L. C., Bessman M. J., Mildvan A. S. NMR and isotopic exchange studies of the site of bond cleavage in the MutT reaction. J Biol Chem. 1992 Aug 25;267(24):16939–16942. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES