Abstract
Periportal and perivenous hepatocytes were isolated from rats subjected to different treatments that induce (starvation, cold exposure) or depress (refeeding after starvation) hepatic fatty acid oxidation. These experiments were designed to determine factors that may be involved in creating and maintaining the asymmetrical distribution of this metabolic pathway in the acinus of the liver. The uneven distribution of mitochondrial [14C]-palmitate oxidation within the acinus (i) was very flexible and changed markedly with the physiological status of the animal (periportal/perivenous ratio: 1.5, 2.0, 1.0 and 0.4 for fed, starved, refed and cold-exposed animals respectively), (ii) coincided with a similar zonation of carnitine palmitoyltransferase I activity in fed as well as in cold-exposed animals, (iii) was paralleled by a comparable zonation of mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase activity in starved animals, and (iv) was not determined by zonal differences in any of the following parameters: sensitivity of carnitine palmitoyltransferase I to malonyl-CoA, intracellular concentration of malonyl-CoA, fatty acid synthesizing capacity, acetyl-CoA carboxylase activity, fatty acid synthase activity or relative content of the two hepatic acetyl-CoA carboxylase isoforms. Unlike mitochondrial oxidation, peroxisomal [14C]palmitate oxidation was always zonated towards the perivenous zone of the liver irrespective of the physiological status of the animal. The data presented show that changes in the acinar distribution of mitochondrial long-chain fatty acid oxidation involve specific long-term mechanisms under different physiological conditions.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Awan M. M., Saggerson E. D. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J. 1993 Oct 1;295(Pt 1):61–66. doi: 10.1042/bj2950061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beynen A. C., Vaartjes W. J., Geelen M. J. Opposite effects of insulin and glucagon in acute hormonal control of hepatic lipogenesis. Diabetes. 1979 Sep;28(9):828–835. doi: 10.2337/diab.28.9.828. [DOI] [PubMed] [Google Scholar]
- Bianchi A., Evans J. L., Iverson A. J., Nordlund A. C., Watts T. D., Witters L. A. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990 Jan 25;265(3):1502–1509. [PubMed] [Google Scholar]
- Bijleveld C., Geelen M. J. Measurement of acetyl-CoA carboxylase activity in isolated hepatocytes. Biochim Biophys Acta. 1987 Apr 24;918(3):274–283. doi: 10.1016/0005-2760(87)90231-1. [DOI] [PubMed] [Google Scholar]
- Bühler R., Lindros K. O., Nordling A., Johansson I., Ingelman-Sundberg M. Zonation of cytochrome P450 isozyme expression and induction in rat liver. Eur J Biochem. 1992 Feb 15;204(1):407–412. doi: 10.1111/j.1432-1033.1992.tb16650.x. [DOI] [PubMed] [Google Scholar]
- Casals N., Roca N., Guerrero M., Gil-Gómez G., Ayté J., Ciudad C. J., Hegardt F. G. Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis. Biochem J. 1992 Apr 1;283(Pt 1):261–264. doi: 10.1042/bj2830261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen K. S., Katz J. Zonation of glycogen and glucose syntheses, but not glycolysis, in rat liver. Biochem J. 1988 Oct 1;255(1):99–104. doi: 10.1042/bj2550099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clinkenbeard K. D., Reed W. D., Mooney R. A., Lane M. D. Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzme A cycle enzymes in liver. Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J Biol Chem. 1975 Apr 25;250(8):3108–3116. [PubMed] [Google Scholar]
- Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
- Evans J. L., Quistorff B., Witters L. A. Hepatic zonation of acetyl-CoA carboxylase activity. Biochem J. 1990 Sep 15;270(3):665–672. doi: 10.1042/bj2700665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53(3):275–354. doi: 10.1016/0163-7258(92)90055-5. [DOI] [PubMed] [Google Scholar]
- Goodson J., Pope T. S., Allred J. B. Molecular weights of subunits of acetyl CoA carboxylase in rat liver cytoplasm. Biochem Biophys Res Commun. 1984 Jul 31;122(2):694–699. doi: 10.1016/s0006-291x(84)80089-3. [DOI] [PubMed] [Google Scholar]
- Gulick T., Cresci S., Caira T., Moore D. D., Kelly D. P. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11012–11016. doi: 10.1073/pnas.91.23.11012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guzman M., Castro J. Zonal heterogeneity of the effects of chronic ethanol feeding on hepatic fatty acid metabolism. Hepatology. 1990 Nov;12(5):1098–1105. doi: 10.1002/hep.1840120504. [DOI] [PubMed] [Google Scholar]
- Guzmán M., Castro J. Zonation of fatty acid metabolism in rat liver. Biochem J. 1989 Nov 15;264(1):107–113. doi: 10.1042/bj2640107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guzmán M., Geelen M. J. Activity of carnitine palmitoyltransferase in mitochondrial outer membranes and peroxisomes in digitonin-permeabilized hepatocytes. Selective modulation of mitochondrial enzyme activity by okadaic acid. Biochem J. 1992 Oct 15;287(Pt 2):487–492. doi: 10.1042/bj2870487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guzmán M., Geelen M. J. Regulation of fatty acid oxidation in mammalian liver. Biochim Biophys Acta. 1993 Apr 23;1167(3):227–241. doi: 10.1016/0005-2760(93)90224-w. [DOI] [PubMed] [Google Scholar]
- Haagsman H. P., de Haas C. G., Geelen M. J., van Golde L. M. Regulation of triacylglycerol synthesis in the liver. Modulation of diacylglycerol acyltransferase activity in vitro. J Biol Chem. 1982 Sep 25;257(18):10593–10598. [PubMed] [Google Scholar]
- Holland R., Witters L. A., Hardie D. G. Glucagon inhibits fatty acid synthesis in isolated hepatocytes via phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase. Eur J Biochem. 1984 Apr 16;140(2):325–333. doi: 10.1111/j.1432-1033.1984.tb08105.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Lamers W. H., Moorman A. F. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme. 1992;46(1-3):72–93. doi: 10.1159/000468779. [DOI] [PubMed] [Google Scholar]
- Jungermann K., Thurman R. G. Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme. 1992;46(1-3):33–58. doi: 10.1159/000468777. [DOI] [PubMed] [Google Scholar]
- Kaikaus R. M., Sui Z., Lysenko N., Wu N. Y., Ortiz de Montellano P. R., Ockner R. K., Bass N. M. Regulation of pathways of extramitochondrial fatty acid oxidation and liver fatty acid-binding protein by long-chain monocarboxylic fatty acids in hepatocytes. Effect of inhibition of carnitine palmitoyltransferase I. J Biol Chem. 1993 Dec 25;268(36):26866–26871. [PubMed] [Google Scholar]
- Katz N. R., Fischer W., Giffhorn S. Distribution of enzymes of fatty acid and ketone body metabolism in periportal and perivenous rat-liver tissue. Eur J Biochem. 1983 Sep 1;135(1):103–107. doi: 10.1111/j.1432-1033.1983.tb07623.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lindauer M., Beier K., Völkl A., Fahimi H. D. Zonal heterogeneity of peroxisomal enzymes in rat liver: differential induction by three divergent hypolipidemic drugs. Hepatology. 1994 Aug;20(2):475–486. [PubMed] [Google Scholar]
- Lopaschuk G. D., Belke D. D., Gamble J., Itoi T., Schönekess B. O. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994 Aug 4;1213(3):263–276. doi: 10.1016/0005-2760(94)00082-4. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Woeltje K. F., Kuwajima M., Foster D. W. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989 May;5(3):271–284. doi: 10.1002/dmr.5610050305. [DOI] [PubMed] [Google Scholar]
- Osmundsen H., Bremer J., Pedersen J. I. Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta. 1991 Sep 11;1085(2):141–158. doi: 10.1016/0005-2760(91)90089-z. [DOI] [PubMed] [Google Scholar]
- Quant P. A. Activity and expression of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the starved-to-fed transition. Biochem Soc Trans. 1990 Oct;18(5):994–995. doi: 10.1042/bst0180994. [DOI] [PubMed] [Google Scholar]
- Quant P. A., Robin D., Robin P., Ferre P., Brand M. D., Girard J. Control of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the foetal/neonatal transition, suckling and weaning in the rat. Eur J Biochem. 1991 Jan 30;195(2):449–454. doi: 10.1111/j.1432-1033.1991.tb15724.x. [DOI] [PubMed] [Google Scholar]
- Quant P. A., Tubbs P. K., Brand M. D. Glucagon activates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in vivo by decreasing the extent of succinylation of the enzyme. Eur J Biochem. 1990 Jan 12;187(1):169–174. doi: 10.1111/j.1432-1033.1990.tb15291.x. [DOI] [PubMed] [Google Scholar]
- Quistorff B., Grunnet N. Dual-digitonin-pulse perfusion. Concurrent sampling of periportal and perivenous cytosol of rat liver for determination of metabolites and enzyme activities. Biochem J. 1987 Apr 1;243(1):87–95. doi: 10.1042/bj2430087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy J. K., Mannaerts G. P. Peroxisomal lipid metabolism. Annu Rev Nutr. 1994;14:343–370. doi: 10.1146/annurev.nu.14.070194.002015. [DOI] [PubMed] [Google Scholar]
- Rodríguez J. C., Gil-Gómez G., Hegardt F. G., Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J Biol Chem. 1994 Jul 22;269(29):18767–18772. [PubMed] [Google Scholar]
- Rognstad R. Estimation of peroxisomal and mitochondrial fatty acid oxidation in rat hepatocytes using tritiated substrates. Biochem J. 1991 Oct 1;279(Pt 1):147–150. doi: 10.1042/bj2790147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roman-Lopez C. R., Goodson J., Allred J. B. Determination of the quantity of acetyl CoA carboxylase by [14C]methyl avidin binding. J Lipid Res. 1987 May;28(5):599–604. [PubMed] [Google Scholar]
- Royo T., Pedragosa M. J., Ayté J., Gil-Gómez G., Vilaró S., Hegardt F. G. Immunolocalization of mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase in rat liver. J Cell Physiol. 1995 Jan;162(1):103–109. doi: 10.1002/jcp.1041620112. [DOI] [PubMed] [Google Scholar]
- Saddik M., Gamble J., Witters L. A., Lopaschuk G. D. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836–25845. [PubMed] [Google Scholar]
- Serra D., Casals N., Asins G., Royo T., Ciudad C. J., Hegardt F. G. Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase protein by starvation, fat feeding, and diabetes. Arch Biochem Biophys. 1993 Nov 15;307(1):40–45. doi: 10.1006/abbi.1993.1557. [DOI] [PubMed] [Google Scholar]
- Shiota M., Fujimoto Y., Inagami M., Hiramatsu M., Moriyama M., Kimura K., Ohta M., Sugano T. Adaptive changes in zonation for gluconeogenic capacity in liver lobules of cold-exposed rats. Am J Physiol. 1993 Oct;265(4 Pt 1):E559–E564. doi: 10.1152/ajpendo.1993.265.4.E559. [DOI] [PubMed] [Google Scholar]
- Skorin C., Necochea C., Johow V., Soto U., Grau A. M., Bremer J., Leighton F. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes. Biochem J. 1992 Jan 15;281(Pt 2):561–567. doi: 10.1042/bj2810561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thampy K. G. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem. 1989 Oct 25;264(30):17631–17634. [PubMed] [Google Scholar]
- Tijburg L. B., Geelen M. J., van Golde L. M. Regulation of the biosynthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine in the liver. Biochim Biophys Acta. 1989 Jul 17;1004(1):1–19. doi: 10.1016/0005-2760(89)90206-3. [DOI] [PubMed] [Google Scholar]
- Tijburg L. B., Maquedano A., Bijleveld C., Guzman M., Geelen M. J. Effects of ethanol feeding on hepatic lipid synthesis. Arch Biochem Biophys. 1988 Dec;267(2):568–579. doi: 10.1016/0003-9861(88)90064-1. [DOI] [PubMed] [Google Scholar]
- Tosh D., Alberti G. M., Agius L. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Biochem J. 1988 Nov 15;256(1):197–204. doi: 10.1042/bj2560197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagenaar G. T., Chamuleau R. A., de Haan J. G., Maas M. A., de Boer P. A., Marx F., Moorman A. F., Frederiks W. M., Lamers W. H. Experimental evidence that the physiological position of the liver within the circulation is not a major determinant of zonation of gene expression. Hepatology. 1993 Nov;18(5):1144–1153. [PubMed] [Google Scholar]
- Winz R., Hess D., Aebersold R., Brownsey R. W. Unique structural features and differential phosphorylation of the 280-kDa component (isozyme) of rat liver acetyl-CoA carboxylase. J Biol Chem. 1994 May 20;269(20):14438–14445. [PubMed] [Google Scholar]
- Witters L. A., Gao G., Kemp B. E., Quistorff B. Hepatic 5'-AMP-activated protein kinase: zonal distribution and relationship to acetyl-CoA carboxylase activity in varying nutritional states. Arch Biochem Biophys. 1994 Feb 1;308(2):413–419. doi: 10.1006/abbi.1994.1058. [DOI] [PubMed] [Google Scholar]