Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Nov 1;311(Pt 3):873–879. doi: 10.1042/bj3110873

Two new sphingomyelin analogues inhibit phosphatidylcholine biosynthesis by decreasing membrane-bound CTP: phosphocholine cytidylyltransferase levels in HaCaT cells.

T Wieder 1, C Perlitz 1, M Wieprecht 1, R T Huang 1, C C Geilen 1, C E Orfanos 1
PMCID: PMC1136082  PMID: 7487944

Abstract

The effects of two newly synthesized sphingomyelin analogues on phosphatidylcholine biosynthesis were investigated in the immortalized human keratinocyte cell line HaCaT. N-Acetyl-erythro-sphingosine-1-phosphocholine (AcSM) and N-octanoyl-erythro-sphingosine-1-phosphocholine (OcSM) inhibited the incorporation of choline into phosphatidylcholine with half-inhibitory concentrations (IC50) of 6 micrograms/ml and 10 micrograms/ml respectively. Further experiments revealed that AcSM and OcSM interfered with the translocation of the rate-limiting enzyme of phosphatidylcholine biosynthesis, CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15), in HaCaT cells and inhibited cytidylyltransferase activity in vitro. Despite the fact that OcSM was a potent inhibitor of cytidylyltransferase in vitro, its effects on phosphatidylcholine biosynthesis and translocation of cytidylyltransferase in HaCaT cells were less pronounced as compared with AcSM. Finally, we showed that the comparatively strong effects of AcSM in cell culture experiments were due to the uptake of large amounts of this sphingomyelin analogue into the cells. The results presented demonstrate that the activity of cytidylyltransferase may be negatively regulated by a high ratio of choline head group-containing sphingolipids.

Full text

PDF
873

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol lipids and cell proliferation. Biochim Biophys Acta. 1987 Apr 20;907(1):33–45. doi: 10.1016/0304-419x(87)90017-5. [DOI] [PubMed] [Google Scholar]
  3. Boukamp P., Petrussevska R. T., Breitkreutz D., Hornung J., Markham A., Fusenig N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988 Mar;106(3):761–771. doi: 10.1083/jcb.106.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cornell R. B. Regulation of CTP:phosphocholine cytidylyltransferase by lipids. 1. Negative surface charge dependence for activation. Biochemistry. 1991 Jun 18;30(24):5873–5880. doi: 10.1021/bi00238a010. [DOI] [PubMed] [Google Scholar]
  5. Cornell R. B. Regulation of CTP:phosphocholine cytidylyltransferase by lipids. 2. Surface curvature, acyl chain length, and lipid-phase dependence for activation. Biochemistry. 1991 Jun 18;30(24):5881–5888. doi: 10.1021/bi00238a011. [DOI] [PubMed] [Google Scholar]
  6. Cornell R., Vance D. E. Translocation of CTP: phosphocholine cytidylyltransferase from cytosol to membranes in HeLa cells: stimulation by fatty acid, fatty alcohol, mono- and diacylglycerol. Biochim Biophys Acta. 1987 May 13;919(1):26–36. doi: 10.1016/0005-2760(87)90214-1. [DOI] [PubMed] [Google Scholar]
  7. Geilen C. C., Haase A., Wieder T., Arndt D., Zeisig R., Reutter W. Phospholipid analogues: side chain- and polar head group-dependent effects on phosphatidylcholine biosynthesis. J Lipid Res. 1994 Apr;35(4):625–632. [PubMed] [Google Scholar]
  8. Geilen C. C., Wieder T., Haase A., Reutter W., Morré D. M., Morré D. J. Uptake, subcellular distribution and metabolism of the phospholipid analogue hexadecylphosphocholine in MDCK cells. Biochim Biophys Acta. 1994 Feb 10;1211(1):14–22. doi: 10.1016/0005-2760(94)90133-3. [DOI] [PubMed] [Google Scholar]
  9. Geilen C. C., Wieder T., Reutter W. Hexadecylphosphocholine inhibits translocation of CTP:choline-phosphate cytidylyltransferase in Madin-Darby canine kidney cells. J Biol Chem. 1992 Apr 5;267(10):6719–6724. [PubMed] [Google Scholar]
  10. Grunicke H. H. The cell membrane as a target for cancer chemotherapy. Eur J Cancer. 1991;27(3):281–284. doi: 10.1016/0277-5379(91)90516-g. [DOI] [PubMed] [Google Scholar]
  11. Haase R., Wieder T., Geilen C. C., Reutter W. The phospholipid analogue hexadecylphosphocholine inhibits phosphatidylcholine biosynthesis in Madin-Darby canine kidney cells. FEBS Lett. 1991 Aug 19;288(1-2):129–132. doi: 10.1016/0014-5793(91)81018-4. [DOI] [PubMed] [Google Scholar]
  12. Hannun Y. A., Linardic C. M. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):223–236. doi: 10.1016/0304-4157(93)90001-5. [DOI] [PubMed] [Google Scholar]
  13. Hudson P. L., Pedersen W. A., Saltsman W. S., Liscovitch M., MacLaughlin D. T., Donahoe P. K., Blusztajn J. K. Modulation by sphingolipids of calcium signals evoked by epidermal growth factor. J Biol Chem. 1994 Aug 26;269(34):21885–21890. [PubMed] [Google Scholar]
  14. Jamil H., Hatch G. M., Vance D. E. Evidence that binding of CTP:phosphocholine cytidylyltransferase to membranes in rat hepatocytes is modulated by the ratio of bilayer- to non-bilayer-forming lipids. Biochem J. 1993 Apr 15;291(Pt 2):419–427. doi: 10.1042/bj2910419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jamil H., Yao Z. M., Vance D. E. Feedback regulation of CTP:phosphocholine cytidylyltransferase translocation between cytosol and endoplasmic reticulum by phosphatidylcholine. J Biol Chem. 1990 Mar 15;265(8):4332–4339. [PubMed] [Google Scholar]
  16. KALLER H. [Preparative production of sphingosinephosphorvlcholine]. Biochem Z. 1961;334:451–456. [PubMed] [Google Scholar]
  17. Kent C. Regulation of phosphatidylcholine biosynthesis. Prog Lipid Res. 1990;29(2):87–105. doi: 10.1016/0163-7827(90)90010-i. [DOI] [PubMed] [Google Scholar]
  18. Klenk E., Huang R. T. Uber den Gehalt von C18- und C20-Sphingosin der Ceramide und Sphingomyeline der grauen und weissen Substanz des menschlichen Gehirns. Hoppe Seylers Z Physiol Chem. 1969 Mar;350(3):373–378. [PubMed] [Google Scholar]
  19. Okazaki T., Bell R. M., Hannun Y. A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem. 1989 Nov 15;264(32):19076–19080. [PubMed] [Google Scholar]
  20. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  21. Sohal P. S., Cornell R. B. Sphingosine inhibits the activity of rat liver CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1990 Jul 15;265(20):11746–11750. [PubMed] [Google Scholar]
  22. Tronchere H., Terce F., Record M., Ribbes G., Chap H. Modulation of CTP:phosphocholine cytidylyltransferase translocation by oleic acid and the antitumoral alkylphospholipid in HL-60 cells. Biochem Biophys Res Commun. 1991 Apr 15;176(1):157–165. doi: 10.1016/0006-291x(91)90903-k. [DOI] [PubMed] [Google Scholar]
  23. Tronchère H., Record M., Tercé F., Chap H. Phosphatidylcholine cycle and regulation of phosphatidylcholine biosynthesis by enzyme translocation. Biochim Biophys Acta. 1994 May 13;1212(2):137–151. doi: 10.1016/0005-2760(94)90248-8. [DOI] [PubMed] [Google Scholar]
  24. Unger C., Damenz W., Fleer E. A., Kim D. J., Breiser A., Hilgard P., Engel J., Nagel G., Eibl H. Hexadecylphosphocholine, a new ether lipid analogue. Studies on the antineoplastic activity in vitro and in vivo. Acta Oncol. 1989;28(2):213–217. doi: 10.3109/02841868909111249. [DOI] [PubMed] [Google Scholar]
  25. Utal A. K., Jamil H., Vance D. E. Diacylglycerol signals the translocation of CTP:choline-phosphate cytidylyltransferase in HeLa cells treated with 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem. 1991 Dec 15;266(35):24084–24091. [PubMed] [Google Scholar]
  26. Vance D. E. Boehringer Mannheim Award lecture. Phosphatidylcholine metabolism: masochistic enzymology, metabolic regulation, and lipoprotein assembly. Biochem Cell Biol. 1990 Oct;68(10):1151–1165. doi: 10.1139/o90-172. [DOI] [PubMed] [Google Scholar]
  27. Wang Y., Sweitzer T. D., Weinhold P. A., Kent C. Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1993 Mar 15;268(8):5899–5904. [PubMed] [Google Scholar]
  28. Watkins J. D., Kent C. Immunolocalization of membrane-associated CTP:phosphocholine cytidylyltransferase in phosphatidylcholine-deficient Chinese hamster ovary cells. J Biol Chem. 1992 Mar 15;267(8):5686–5692. [PubMed] [Google Scholar]
  29. Weinhold P. A., Rounsifer M. E., Feldman D. A. The purification and characterization of CTP:phosphorylcholine cytidylyltransferase from rat liver. J Biol Chem. 1986 Apr 15;261(11):5104–5110. [PubMed] [Google Scholar]
  30. Wieprecht M., Wieder T., Geilen C. C. N-[2-bromocinnamyl(amino)ethyl]-5-isoquinolinesulphonamide (H-89) inhibits incorporation of choline into phosphatidylcholine via inhibition of choline kinase and has no effect on the phosphorylation of CTP:phosphocholine cytidylyltransferase. Biochem J. 1994 Jan 1;297(Pt 1):241–247. doi: 10.1042/bj2970241. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES