Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Aug 12:2024.08.12.607507. [Version 1] doi: 10.1101/2024.08.12.607507

MRGM: An enhanced catalog of mouse gut microbial genomes substantially broadening taxonomic and functional landscapes

Nayeon Kim, Chan Yeong Kim, Junyeong Ma, Sunmo Yang, Dongjin Park, Sang-Jun Ha, Peter Belenky, Insuk Lee
PMCID: PMC11360902  PMID: 39211244

Abstract

Mouse gut microbiome research is pivotal for understanding the human gut microbiome, providing insights into disease modeling, host-microbe interactions, and the dietary influence on the gut microbiome. To enhance the translational value of mouse gut microbiome studies, we need detailed and high-quality catalogs of mouse gut microbial genomes. We introduce the Mouse Reference Gut Microbiome (MRGM), a comprehensive catalog with 42,245 non-redundant mouse gut bacterial genomes across 1,524 species. MRGM marks a 40% increase in the known taxonomic diversity of mouse gut microbes, capturing previously underrepresented lineages through refined genome quality assessment techniques. MRGM not only broadens the taxonomic landscape but also enriches the functional landscape of the mouse gut microbiome. Using deep learning, we have elevated the Gene Ontology annotation rate for mouse gut microbial proteins from 3.2% with orthology to 60%, marking an over 18-fold increase. MRGM supports both DNA- and marker-based taxonomic profiling by providing custom databases, surpassing previous catalogs in performance. Finally, taxonomic and functional comparisons between human and mouse gut microbiota reveal diet-driven divergences in their taxonomic composition and functional enrichment. Overall, our study highlights the value of high-quality microbial genome catalogs in advancing our understanding of the co-evolution between gut microbes and their host.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES