Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Aug 8:2023.08.02.551681. [Version 3] doi: 10.1101/2023.08.02.551681

Targeting the dependence on PIK3C3-mTORC1 signaling in dormancy-prone breast cancer cells blunts metastasis initiation

Islam E Elkholi, Amélie Robert, Camille Malouf, Hellen Kuasne, Stanislav Drapela, Graham Macleod, Steven Hébert, Alain Pacis, Virginie Calderon, Claudia L Kleinman, Ana P Gomes, Julio A Aguirre-Ghiso, Morag Park, Stéphane Angers, Jean-François Côté
PMCID: PMC11360912  PMID: 39211165

Abstract

Halting breast cancer metastatic relapses following primary tumor removal and the clinical dormant phase, remains challenging, due to a lack of specific vulnerabilities to target during dormancy. To address this, we conducted genome-wide CRISPR screens on two breast cancer cell lines with distinct dormancy properties: 4T1 (short-term dormancy) and 4T07 (prolonged dormancy). We discovered that loss of class-III PI3K, Pik3c3, revealed a unique vulnerability in 4T07 cells. Surprisingly, dormancy-prone 4T07 cells exhibited higher mTORC1 activity than 4T1 cells, due to lysosome-dependent signaling occurring at the cell periphery. Pharmacological inhibition of Pik3c3 counteracted this phenotype in 4T07 cells, and selectively reduced metastasis burden only in the 4T07 dormancy-prone model. This mechanism was also detected in human breast cancer cell lines in addition to a breast cancer patient-derived xenograft supporting that it may be relevant in humans. Our findings suggest dormant cancer cell-initiated metastasis may be prevented in patients carrying tumor cells that display PIK3C3-peripheral lysosomal signaling to mTORC1.

Statement of Significance

We reveal that dormancy-prone breast cancer cells depend on the class III PI3K to mediate a constant peripheral lysosomal positioning and mTORC1 hyperactivity. Targeting this pathway might blunt breast cancer metastasis.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES