Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jul 25:2024.07.24.604690. [Version 1] doi: 10.1101/2024.07.24.604690

A Viral-Encoded Homologue of IPS-1 Modulates Innate Immune Signaling During KSHV Lytic Replication

Daniel Miranda, Buyuan He, Julio C Sanchez, Ashkon Sennatti, Johnny R Bontemps, James T Tran, Wilson S Tang, David Jesse Sanchez
PMCID: PMC11360917  PMID: 39211267

ABSTRACT

Modulation of innate immunity is critical for virus persistence in a host. In particular, viral-encoded disruption of type I interferon, a major antiviral cytokine induced to fight viral infection, is a key component in the repertoire of viral pathogenicity genes. We have identified a previously undescribed open reading frame within the Kaposi’s sarcoma-associated herpesvirus (KSHV) genome that encodes a homologue of the human IPS-1 (also referred to as MAVS) protein that we have termed viral-IPS-1 (v-IPS-1). This protein is expressed during the lytic replication program of KSHV, and expression of v-IPS-1 blocks induction of type I interferon upstream of the TRAF3 signaling node including signaling initiated via both the RLR and TLR3/4 signaling axes. This disruption of signaling coincides with destabilization of the cellular innate signaling adaptors IPS-1 and TRIF along with a concatenate stabilization of the TRAF3 protein. Additionally, expression of v-IPS-1 leads to decreased antiviral responses indicating a blot to type I interferon induction during viral infection. Taken together, v-IPS-1 is the first described viral homologue of IPS-1 and this viral protein leads to reprogramming of innate immunity through modulation of type I interferon signaling during KSHV lytic replication.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES