Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Nov 1;311(Pt 3):1021–1023. doi: 10.1042/bj3111021

The Gly-54-->Asp allelic form of human mannose-binding protein (MBP) fails to bind MBP-associated serine protease.

M Matsushita 1, R A Ezekowitz 1, T Fujita 1
PMCID: PMC1136104  PMID: 7487919

Abstract

The human mannose-binding protein (MBP) is a pattern recognition molecule that appears to play a role in initial host defence. MBP activates the complement cascade and it may act as an opsonin both in the absence and in the presence of complement. A number of distinct MBP allelic forms exist in different population groups. An allele that occurs in 5-7% of Caucasians was identified by an inability to activate the complement system. A homozygous mutation at base pair 230 of the MBP gene results in a Gly-to-Asp substitution at the fifth collagen repeat. It appears that the resultant protein, MBPD, is able to form high-order multimers that bind bacteria but do not support complement activation. Recently a novel serine protease, the MBP-associated serine protease (MASP), has been described. MBP-MASP complexes circulate in serum and result in the direct activation of a novel complement pathway (lectin pathway) in the absence of the first complement components. In this study we demonstrate that MASP and its proenzyme proMASP are unable to bind to recombinant (r)MBPD. This lack of a MASP-rMBPD association corresponds to a failure of the Gly-54-->Asp form of MBP to activate complement. Our results provide a biochemical basis for the functional deficit in the Gly-54-->Asp allelic form of MBP and suggest that the proMASP/MASP binding site maps to the fifth collagen repeat of MBP.

Full text

PDF
1021

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem. 1988 Jul 15;263(20):9557–9560. [PubMed] [Google Scholar]
  2. Ikeda K., Sannoh T., Kawasaki N., Kawasaki T., Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987 Jun 5;262(16):7451–7454. [PubMed] [Google Scholar]
  3. Kawasaki N., Kawasaki T., Yamashina I. A serum lectin (mannan-binding protein) has complement-dependent bactericidal activity. J Biochem. 1989 Sep;106(3):483–489. doi: 10.1093/oxfordjournals.jbchem.a122878. [DOI] [PubMed] [Google Scholar]
  4. Knobel H. R., Heusser C., Rodrick M. L., Isliker H. Enzymatic digestion of the first component of human complement (C1q). J Immunol. 1974 Jun;112(6):2094–2101. [PubMed] [Google Scholar]
  5. Kuhlman M., Joiner K., Ezekowitz R. A. The human mannose-binding protein functions as an opsonin. J Exp Med. 1989 May 1;169(5):1733–1745. doi: 10.1084/jem.169.5.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
  7. Malhotra R., Laursen S. B., Willis A. C., Sim R. B. Localization of the receptor-binding site in the collectin family of proteins. Biochem J. 1993 Jul 1;293(Pt 1):15–19. doi: 10.1042/bj2930015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Matsushita M., Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med. 1992 Dec 1;176(6):1497–1502. doi: 10.1084/jem.176.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Matsushita M., Okada H. Alternative complement pathway activation by C4b deposited during classical pathway activation. J Immunol. 1986 Apr 15;136(8):2994–2998. [PubMed] [Google Scholar]
  10. Nagasawa S., Stroud R. M. Cleavage of C2 by C1s into the antigenically distinct fragments C2a and C2b: demonstration of binding of C2b to C4b. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2998–3001. doi: 10.1073/pnas.74.7.2998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ohta M., Okada M., Yamashina I., Kawasaki T. The mechanism of carbohydrate-mediated complement activation by the serum mannan-binding protein. J Biol Chem. 1990 Feb 5;265(4):1980–1984. [PubMed] [Google Scholar]
  12. Polley M. J., Müller-Eberhard H. J. Enharncement of the hemolytic activity of the second component of human complement by oxidation. J Exp Med. 1967 Dec 1;126(6):1013–1025. doi: 10.1084/jem.126.6.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sastry K., Ezekowitz R. A. Collectins: pattern recognition molecules involved in first line host defense. Curr Opin Immunol. 1993 Feb;5(1):59–66. doi: 10.1016/0952-7915(93)90082-4. [DOI] [PubMed] [Google Scholar]
  14. Sato T., Endo Y., Matsushita M., Fujita T. Molecular characterization of a novel serine protease involved in activation of the complement system by mannose-binding protein. Int Immunol. 1994 Apr;6(4):665–669. doi: 10.1093/intimm/6.4.665. [DOI] [PubMed] [Google Scholar]
  15. Schweinle J. E., Ezekowitz R. A., Tenner A. J., Kuhlman M., Joiner K. A. Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella. J Clin Invest. 1989 Dec;84(6):1821–1829. doi: 10.1172/JCI114367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schweinle J. E., Nishiyasu M., Ding T. Q., Sastry K., Gillies S. D., Ezekowitz R. A. Truncated forms of mannose-binding protein multimerize and bind to mannose-rich Salmonella montevideo but fail to activate complement in vitro. J Biol Chem. 1993 Jan 5;268(1):364–370. [PubMed] [Google Scholar]
  17. Sellar G. C., Blake D. J., Reid K. B. Characterization and organization of the genes encoding the A-, B- and C-chains of human complement subcomponent C1q. The complete derived amino acid sequence of human C1q. Biochem J. 1991 Mar 1;274(Pt 2):481–490. doi: 10.1042/bj2740481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sheriff S., Chang C. Y., Ezekowitz R. A. Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple alpha-helical coiled-coil. Nat Struct Biol. 1994 Nov;1(11):789–794. doi: 10.1038/nsb1194-789. [DOI] [PubMed] [Google Scholar]
  19. Sumiya M., Super M., Tabona P., Levinsky R. J., Arai T., Turner M. W., Summerfield J. A. Molecular basis of opsonic defect in immunodeficient children. Lancet. 1991 Jun 29;337(8757):1569–1570. doi: 10.1016/0140-6736(91)93263-9. [DOI] [PubMed] [Google Scholar]
  20. Super M., Gillies S. D., Foley S., Sastry K., Schweinle J. E., Silverman V. J., Ezekowitz R. A. Distinct and overlapping functions of allelic forms of human mannose binding protein. Nat Genet. 1992 Sep;2(1):50–55. doi: 10.1038/ng0992-50. [DOI] [PubMed] [Google Scholar]
  21. Super M., Thiel S., Lu J., Levinsky R. J., Turner M. W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet. 1989 Nov 25;2(8674):1236–1239. doi: 10.1016/s0140-6736(89)91849-7. [DOI] [PubMed] [Google Scholar]
  22. Weis W. I., Drickamer K., Hendrickson W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992 Nov 12;360(6400):127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES