Abstract
Large Language Models (LLMs) are rapidly being adopted in healthcare, necessitating standardized reporting guidelines. We present TRIPOD-LLM, an extension of the TRIPOD+AI statement, addressing the unique challenges of LLMs in biomedical applications. TRIPOD-LLM provides a comprehensive checklist of 19 main items and 50 subitems, covering key aspects from title to discussion. The guidelines introduce a modular format accommodating various LLM research designs and tasks, with 14 main items and 32 subitems applicable across all categories. Developed through an expedited Delphi process and expert consensus, TRIPOD-LLM emphasizes transparency, human oversight, and task-specific performance reporting. We also introduce an interactive website ( https://tripod-llm.vercel.app/ ) facilitating easy guideline completion and PDF generation for submission. As a living document, TRIPOD-LLM will evolve with the field, aiming to enhance the quality, reproducibility, and clinical applicability of LLM research in healthcare through comprehensive reporting.
COI
DSB: Editorial, unrelated to this work: Associate Editor of Radiation Oncology, HemOnc.org (no financial compensation); Research funding, unrelated to this work: American Association for Cancer Research; Advisory and consulting, unrelated to this work: MercurialAI. DDF: Editorial, unrelated to this work: Associate Editor of JAMIA, Editorial Board of Scientific Data, Nature; Funding, unrelated to this work: the intramural research program at the U.S. National Library of Medicine, National Institutes of Health. JWG: Editorial, unrelated to this work: Editorial Board of Radiology: Artificial Intelligence, British Journal of Radiology AI journal and NEJM AI. All other authors declare no conflicts of interest.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.