Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Dec 15;312(Pt 3):717–723. doi: 10.1042/bj3120717

Urea synthesis in enterocytes of developing pigs.

G Wu 1
PMCID: PMC1136173  PMID: 8554511

Abstract

Urea synthesis from ammonia, glutamine and arginine was determined in enterocytes from newborn (0-day-old), 2-21-day-old suckling, and 29-58-day-old post-weaning pigs. Pigs were weaned at 21 days of age. Cells were incubated for 30 min at 37 degrees C in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing (i) 0.5-2 mM NH4Cl plus 0.05-2 mM ornithine and 2 mM aspartate, (ii) 1-5 mM glutamine, or (iii) 0.5-2 mM arginine. In enterocytes from newborn and suckling pigs, there was no measurable synthesis of urea from ammonia, glutamine or arginine, and analysis of amino acids by a sensitive fluorimetric HPLC method revealed the formation of negligible amounts of ornithine from arginine. In contrast, in cells from post-weaning pigs, relatively large amounts of urea and ornithine were produced from ammonia, glutamine and arginine in a dose-dependent manner. To elucidate the mechanism of the developmental change of urea synthesis in pig enterocytes, the activities of urea-cycle enzymes were determined. The activities of enterocyte carbamoyl phosphate synthase I and ornithine carbamoyltransferase were lower in post-weaning pigs than in suckling ones, whereas there was no difference in arginino-succinate lyase. The activities of argininosuccinate synthase and arginase were increased by 4-fold and 50-100-fold, respectively, in enterocytes from post-weaning pigs compared with suckling pigs. The induction of arginase appears to be sufficient to account for the formation of urea from ammonia, glutamine and arginine in post-weaning pig enterocytes. These results demonstrate for the first time the presence of synthesis of urea from extracellular or intramitochondrially generated ammonia in enterocytes of post-weaning pigs. This hitherto unrecognized urea synthesis in these cells may be a first line of defence against the potential toxicity of ammonia produced by the extensive intestinal degradation of glutamine (a major fuel for enterocytes) and derived from diet and luminal micro-organisms.

Full text

PDF
717

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blachier F., Darcy-Vrillon B., Sener A., Duée P. H., Malaisse W. J. Arginine metabolism in rat enterocytes. Biochim Biophys Acta. 1991 May 17;1092(3):304–310. doi: 10.1016/s0167-4889(97)90005-7. [DOI] [PubMed] [Google Scholar]
  2. Blachier F., M'Rabet-Touil H., Posho L., Darcy-Vrillon B., Duée P. H. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. Eur J Biochem. 1993 Aug 15;216(1):109–117. doi: 10.1111/j.1432-1033.1993.tb18122.x. [DOI] [PubMed] [Google Scholar]
  3. Blachier F., M'Rabet-Touil H., Posho L., Morel M. T., Bernard F., Darcy-Vrillon B., Duée P. H. Polyamine metabolism in enterocytes isolated from newborn pigs. Biochim Biophys Acta. 1992 Dec 15;1175(1):21–26. doi: 10.1016/0167-4889(92)90005-v. [DOI] [PubMed] [Google Scholar]
  4. Brock A. A., Chapman S. A., Ulman E. A., Wu G. Dietary manganese deficiency decreases rat hepatic arginase activity. J Nutr. 1994 Mar;124(3):340–344. doi: 10.1093/jn/124.3.340. [DOI] [PubMed] [Google Scholar]
  5. Cooper A. J. Ammonia metabolism in mammals: interorgan relationships. Adv Exp Med Biol. 1993;341:21–37. doi: 10.1007/978-1-4615-2484-7_3. [DOI] [PubMed] [Google Scholar]
  6. DeMars R., LeVan S. L., Trend B. L., Russell L. B. Abnormal ornithine carbamoyltransferase in mice having the sparse-fur mutation. Proc Natl Acad Sci U S A. 1976 May;73(5):1693–1697. doi: 10.1073/pnas.73.5.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dhanakoti S. N., Brosnan M. E., Herzberg G. R., Brosnan J. T. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem J. 1992 Mar 1;282(Pt 2):369–375. doi: 10.1042/bj2820369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dugan M. E., Knabe D. A., Wu G. Glutamine and glucose metabolism in intraepithelial lymphocytes from pre- and post-weaning pigs. Comp Biochem Physiol B Biochem Mol Biol. 1994 Dec;109(4):675–681. doi: 10.1016/0305-0491(94)90130-9. [DOI] [PubMed] [Google Scholar]
  9. FINCH L. R., HIRD F. J. The uptake of amino acids by isolated segments of rat intestine. I. A survey of factors affecting the measurement of uptake. Biochim Biophys Acta. 1960 Sep 23;43:268–277. doi: 10.1016/0006-3002(60)90437-6. [DOI] [PubMed] [Google Scholar]
  10. Greengard O., Sahib M. K., Knox W. E. Developmental formation and distribution of arginase in rat tissues. Arch Biochem Biophys. 1970 Apr;137(2):477–482. doi: 10.1016/0003-9861(70)90465-0. [DOI] [PubMed] [Google Scholar]
  11. HALL L. M., JOHNSON R. C., COHEN P. P. The presence of carbamyl phosphate synthetase in intestinal mucosa. Biochim Biophys Acta. 1960 Jan 1;37:144–145. doi: 10.1016/0006-3002(60)90089-5. [DOI] [PubMed] [Google Scholar]
  12. Haüssinger D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J. 1990 Apr 15;267(2):281–290. doi: 10.1042/bj2670281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hurwitz R., Kretchmer N. Development of arginine-synthesizing enzymes in mouse intestine. Am J Physiol. 1986 Jul;251(1 Pt 1):G103–G110. doi: 10.1152/ajpgi.1986.251.1.G103. [DOI] [PubMed] [Google Scholar]
  14. JONES M. E., ANDERSON A. D., ANDERSON C., HODES S. Citrulline synthesis in rat tissues. Arch Biochem Biophys. 1961 Dec;95:499–507. doi: 10.1016/0003-9861(61)90182-5. [DOI] [PubMed] [Google Scholar]
  15. Johnson L. R. Regulation of gastrointestinal mucosal growth. Physiol Rev. 1988 Apr;68(2):456–502. doi: 10.1152/physrev.1988.68.2.456. [DOI] [PubMed] [Google Scholar]
  16. Jones M. E. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. J Nutr. 1985 Apr;115(4):509–515. doi: 10.1093/jn/115.4.509. [DOI] [PubMed] [Google Scholar]
  17. Jungas R. L., Halperin M. L., Brosnan J. T. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev. 1992 Apr;72(2):419–448. doi: 10.1152/physrev.1992.72.2.419. [DOI] [PubMed] [Google Scholar]
  18. Kelly D., King T. P., Brown D. S., McFadyen M. Polyamide profiles of porcine milk and of intestinal tissue of pigs during suckling. Reprod Nutr Dev. 1991;31(1):73–80. doi: 10.1051/rnd:19910107. [DOI] [PubMed] [Google Scholar]
  19. Long C. L., Jeevanandam M., Kinney J. M. Metabolism and recycling of urea in man. Am J Clin Nutr. 1978 Aug;31(8):1367–1382. doi: 10.1093/ajcn/31.8.1367. [DOI] [PubMed] [Google Scholar]
  20. M'Rabet-Touil H., Blachier F., Morel M. T., Darcy-Vrillon B., Duée P. H. Characterization and ontogenesis of nitric oxide synthase activity in pig enterocytes. FEBS Lett. 1993 Oct 4;331(3):243–247. doi: 10.1016/0014-5793(93)80345-u. [DOI] [PubMed] [Google Scholar]
  21. McLeod M. E., Tyor M. P. Transport of basic amino acids by hamster intestine. Am J Physiol. 1967 Jul;213(1):163–168. doi: 10.1152/ajplegacy.1967.213.1.163. [DOI] [PubMed] [Google Scholar]
  22. McMenamy R. H., Vang J., Drapanas T. Amino acid and alpha-keto acid concentrations in plasma and blood of the liverless dog. Am J Physiol. 1965 Nov;209(5):1046–1052. doi: 10.1152/ajplegacy.1965.209.5.1046. [DOI] [PubMed] [Google Scholar]
  23. Meijer A. J., Lamers W. H., Chamuleau R. A. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990 Jul;70(3):701–748. doi: 10.1152/physrev.1990.70.3.701. [DOI] [PubMed] [Google Scholar]
  24. Morris S. M., Jr Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr. 1992;12:81–101. doi: 10.1146/annurev.nu.12.070192.000501. [DOI] [PubMed] [Google Scholar]
  25. Motyl T., Płoszaj T., Wojtasik A., Kukulska W., Podgurniak M. Polyamines in cow's and sow's milk. Comp Biochem Physiol B Biochem Mol Biol. 1995 Jul;111(3):427–433. doi: 10.1016/0305-0491(95)00010-6. [DOI] [PubMed] [Google Scholar]
  26. Overton W. R. Modified histogram subtraction technique for analysis of flow cytometry data. Cytometry. 1988 Nov;9(6):619–626. doi: 10.1002/cyto.990090617. [DOI] [PubMed] [Google Scholar]
  27. Paulus H. The evolutionary history of the ornithine cycle as a determinant of its structure and regulation. Curr Top Cell Regul. 1983;22:177–200. doi: 10.1016/b978-0-12-152822-5.50010-5. [DOI] [PubMed] [Google Scholar]
  28. Puchal A. A., Buddington R. K. Postnatal development of monosaccharide transport in pig intestine. Am J Physiol. 1992 May;262(5 Pt 1):G895–G902. doi: 10.1152/ajpgi.1992.262.5.G895. [DOI] [PubMed] [Google Scholar]
  29. Raijman L. Citrulline synthesis in rat tissues and liver content of carbamoyl phosphate and ornithine. Biochem J. 1974 Feb;138(2):225–232. doi: 10.1042/bj1380225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ratner S. A radiochemical assay for argininosuccinate synthetase with [U-14C]aspartate. Anal Biochem. 1983 Dec;135(2):479–488. doi: 10.1016/0003-2697(83)90716-9. [DOI] [PubMed] [Google Scholar]
  31. Reeds P. J., Burrin D. G., Davis T. A., Fiorotto M. L. Postnatal growth of gut and muscle: competitors or collaborators. Proc Nutr Soc. 1993 Feb;52(1):57–67. doi: 10.1079/pns19930037. [DOI] [PubMed] [Google Scholar]
  32. Ryall J., Nguyen M., Bendayan M., Shore G. C. Expression of nuclear genes encoding the urea cycle enzymes, carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase, in rat liver and intestinal mucosa. Eur J Biochem. 1985 Oct 15;152(2):287–292. doi: 10.1111/j.1432-1033.1985.tb09196.x. [DOI] [PubMed] [Google Scholar]
  33. Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
  34. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  35. Watford M., Lund P., Krebs H. A. Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J. 1979 Mar 15;178(3):589–596. doi: 10.1042/bj1780589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Windmueller H. G., Spaeth A. E. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Arch Biochem Biophys. 1976 Aug;175(2):670–676. doi: 10.1016/0003-9861(76)90558-0. [DOI] [PubMed] [Google Scholar]
  37. Windmueller H. G., Spaeth A. E. Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem. 1980 Jan 10;255(1):107–112. [PubMed] [Google Scholar]
  38. Windmueller H. G., Spaeth A. E. Source and fate of circulating citrulline. Am J Physiol. 1981 Dec;241(6):E473–E480. doi: 10.1152/ajpendo.1981.241.6.E473. [DOI] [PubMed] [Google Scholar]
  39. Worsaae H., Schmidt M. Plasma cortisol and behaviour in early weaned piglets. Acta Vet Scand. 1980;21(4):640–657. doi: 10.1186/BF03546852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wraight C., Lingelbach K., Hoogenraad N. Comparison of ornithine transcarbamylase from rat liver and intestine. Evidence for differential regulation of enzyme levels. Eur J Biochem. 1985 Dec 2;153(2):239–242. doi: 10.1111/j.1432-1033.1985.tb09292.x. [DOI] [PubMed] [Google Scholar]
  41. Wu G. Y., Field C. J., Marliss E. B. Glutamine and glucose metabolism in rat splenocytes and mesenteric lymph node lymphocytes. Am J Physiol. 1991 Jan;260(1 Pt 1):E141–E147. doi: 10.1152/ajpendo.1991.260.1.E141. [DOI] [PubMed] [Google Scholar]
  42. Wu G., Knabe D. A., Flynn N. E. Synthesis of citrulline from glutamine in pig enterocytes. Biochem J. 1994 Apr 1;299(Pt 1):115–121. doi: 10.1042/bj2990115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wu G., Knabe D. A. Free and protein-bound amino acids in sow's colostrum and milk. J Nutr. 1994 Mar;124(3):415–424. doi: 10.1093/jn/124.3.415. [DOI] [PubMed] [Google Scholar]
  44. Wu G., Knabe D. A., Yan W., Flynn N. E. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol. 1995 Feb;268(2 Pt 2):R334–R342. doi: 10.1152/ajpregu.1995.268.2.R334. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES