Abstract
The effects of ethanol on different sarco/endoplasmic reticulum Ca(2+)-transport ATPases (SERCAs) were studied. In sarcoplasmic reticulum vesicles, ethanol concentrations varying from 5 to 20% promoted a progressive inhibition of Ca2+ uptake, enhancement of Ca2+ efflux, activation of the ATPase activity, increase of the enzyme phosphorylation by ATP and inhibition of enzyme phosphorylation by P1. The effects of ethanol on Ca2+ uptake and Ca2+ efflux were antagonized by Mg2+, P(i) and spermine. The increased efflux promoted by ethanol was antagonized by Ca2+ and thapsigargin. In brain and platelet vesicles a biphasic effect of ethanol was observed, so that activation occurred at low concentrations (5-10%) and inhibition at higher concentrations. The activation was not observed with the use of n-propanol and n-butanol. Different from the situation in sarcoplasmic reticulum, the decrease of the Ca2+ uptake in brain and platelet vesicles was associated with an inhibition of the ATPase activity. Mg2+ and P(i) antagonized the enhancement of Ca2+ efflux and the inhibition of Ca2+ uptake promoted by ethanol. However, thapsigargin and Ca2+ did not arrest the Ca2+ efflux promoted by ethanol in brain and platelet preparations. These results suggest that, in sarcoplasmic reticulum vesicles, ethanol uncouples the pump, promoting its activity as a Ca2+ channel. The SERCA isoform found in skeletal muscle has different properties from the isoforms found in brain and blood platelets.
Full text
PDF![733](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf7b/1136175/dc4577fdf6d6/biochemj00049-0088.png)
![734](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf7b/1136175/c18d68f295ec/biochemj00049-0089.png)
![735](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf7b/1136175/b9af467509b4/biochemj00049-0090.png)
![736](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf7b/1136175/0887bb506d18/biochemj00049-0091.png)
![737](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf7b/1136175/88ea5e005dae/biochemj00049-0092.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bobe R., Bredoux R., Wuytack F., Quarck R., Kovàcs T., Papp B., Corvazier E., Magnier C., Enouf J. The rat platelet 97-kDa Ca2+ATPase isoform is the sarcoendoplasmic reticulum Ca2+ATPase 3 protein. J Biol Chem. 1994 Jan 14;269(2):1417–1424. [PubMed] [Google Scholar]
- Brandl C. J., deLeon S., Martin D. R., MacLennan D. H. Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem. 1987 Mar 15;262(8):3768–3774. [PubMed] [Google Scholar]
- Burk S. E., Lytton J., MacLennan D. H., Shull G. E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem. 1989 Nov 5;264(31):18561–18568. [PubMed] [Google Scholar]
- Cardoso C. M., De Meis L. Modulation by fatty acids of Ca2+ fluxes in sarcoplasmic-reticulum vesicles. Biochem J. 1993 Nov 15;296(Pt 1):49–52. doi: 10.1042/bj2960049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carvalho M. G., de Souza D. G., de Meis L. On a possible mechanism of energy conservation in sarcoplasmic reticulum membrane. J Biol Chem. 1976 Jun 25;251(12):3629–3636. [PubMed] [Google Scholar]
- Chiesi M., Inesi G. The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum. J Biol Chem. 1979 Oct 25;254(20):10370–10377. [PubMed] [Google Scholar]
- De Meis L., Tuena de Gómez Puyou M., Gómez Puyou A. Inhibition of mitochondrial F1 ATPase and sarcoplasmic reticulum ATPase by hydrophobic molecules. Eur J Biochem. 1988 Jan 15;171(1-2):343–349. doi: 10.1111/j.1432-1033.1988.tb13796.x. [DOI] [PubMed] [Google Scholar]
- Eletr S., Inesi G. Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta. 1972 Sep 1;282(1):174–179. doi: 10.1016/0005-2736(72)90321-5. [DOI] [PubMed] [Google Scholar]
- Enouf J., Bredoux R., Papp B., Djaffar I., Lompré A. M., Kieffer N., Gayet O., Clemetson K., Wuytack F., Rosa J. P. Human platelets express the SERCA2-b isoform of Ca(2+)-transport ATPase. Biochem J. 1992 Aug 15;286(Pt 1):135–140. doi: 10.1042/bj2860135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Forman S. A., Verkman A. S., Dix J. A., Solomon A. K. n-Alkanols and halothane inhibit red cell anion transport and increase band 3 conformational change rate. Biochemistry. 1985 Aug 27;24(18):4859–4866. doi: 10.1021/bi00339a020. [DOI] [PubMed] [Google Scholar]
- Galina A., de Meis L. Ca2+ translocation and catalytic activity of the sarcoplasmic reticulum ATPase. Modulation by ATP, Ca2+, and Pi. J Biol Chem. 1991 Sep 25;266(27):17978–17982. [PubMed] [Google Scholar]
- Gerdes U., Møller J. V. The Ca2+ permeability of sarcoplasmic reticulum vesicles. II. Ca2+ efflux in the energized state of the calcium pump. Biochim Biophys Acta. 1983 Oct 12;734(2):191–200. doi: 10.1016/0005-2736(83)90117-7. [DOI] [PubMed] [Google Scholar]
- Hara K., Kasai M. The mechanism of increase in the ATPase activity of sarcoplasmic reticulum vesicles treated with n-alcohols. J Biochem. 1977 Oct;82(4):1005–1017. doi: 10.1093/oxfordjournals.jbchem.a131771. [DOI] [PubMed] [Google Scholar]
- Hasselbach W., Oetliker H. Energetics and electrogenicity of the sarcoplasmic reticulum calcium pump. Annu Rev Physiol. 1983;45:325–339. doi: 10.1146/annurev.ph.45.030183.001545. [DOI] [PubMed] [Google Scholar]
- Inesi G. Mechanism of calcium transport. Annu Rev Physiol. 1985;47:573–601. doi: 10.1146/annurev.ph.47.030185.003041. [DOI] [PubMed] [Google Scholar]
- Kondo M., Kasai M. The effects of n-alcohols on sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1973 Jul 6;311(3):391–399. doi: 10.1016/0005-2736(73)90319-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Le Peuch C. J., Le Peuch D. A., Katz S., Demaille J. G., Hincke M. T., Bredoux R., Enouf J., Levy-Toledano S., Caen J. Regulation of calcium accumulation and efflux from platelet vesicles. Possible role for cyclic-AMP-dependent phosphorylation and calmodulin. Biochim Biophys Acta. 1983 Jun 23;731(3):456–464. doi: 10.1016/0005-2736(83)90041-x. [DOI] [PubMed] [Google Scholar]
- Lopes C. M., Louro S. R. The effects of n-alkanols on the lipid/protein interface of Ca(2+)-ATPase of sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1991 Dec 9;1070(2):467–473. doi: 10.1016/0005-2736(91)90088-p. [DOI] [PubMed] [Google Scholar]
- Lytton J., Zarain-Herzberg A., Periasamy M., MacLennan D. H. Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem. 1989 Apr 25;264(12):7059–7065. [PubMed] [Google Scholar]
- MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
- McWhirter J. M., Gould G. W., East J. M., Lee A. G. A kinetic model for Ca2+ efflux mediated by the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochem J. 1987 Aug 1;245(3):713–721. doi: 10.1042/bj2450713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melgunov V. I., Jindal S., Belikova M. P. Short-chain alkanols and the functional efficiency of the Ca pump in the sarcoplasmic reticulum of rabbit skeletal muscles. FEBS Lett. 1988 Jan 25;227(2):157–160. doi: 10.1016/0014-5793(88)80888-3. [DOI] [PubMed] [Google Scholar]
- Ohnishi S. T., Flick J. L., Rubin E. Ethanol increases calcium permeability of heavy sarcoplasmic reticulum of skeletal muscle. Arch Biochem Biophys. 1984 Sep;233(2):588–594. doi: 10.1016/0003-9861(84)90483-1. [DOI] [PubMed] [Google Scholar]
- Petretski J. H., Wolosker H., de Meis L. Activation of Ca2+ uptake and inhibition of reversal of the sarcoplasmic reticulum Ca2+ pump by aromatic compounds. J Biol Chem. 1989 Dec 5;264(34):20339–20343. [PubMed] [Google Scholar]
- Sorenson M. M., Reuben J. P., Eastwood A. B., Orentlicher M., Katz G. M. Functional heterogeneity of the sarcoplasmic reticulum within sarcomeres of skinned muscle fibers. J Membr Biol. 1980 Mar 31;53(1):1–17. doi: 10.1007/BF01871168. [DOI] [PubMed] [Google Scholar]
- Tanford C. Twenty questions concerning the reaction cycle of the sarcoplasmic reticulum calcium pump. CRC Crit Rev Biochem. 1984;17(2):123–151. doi: 10.3109/10409238409113603. [DOI] [PubMed] [Google Scholar]
- Wolosker H., Pacheco A. G., de Meis L. Local anesthetics induce fast Ca2+ efflux through a nonenergized state of the sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem. 1992 Mar 25;267(9):5785–5789. [PubMed] [Google Scholar]
- Wuytack F., Papp B., Verboomen H., Raeymaekers L., Dode L., Bobe R., Enouf J., Bokkala S., Authi K. S., Casteels R. A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem. 1994 Jan 14;269(2):1410–1416. [PubMed] [Google Scholar]
- de Meis L. Approaches to studying the mechanisms of ATP synthesis in sarcoplasmic reticulum. Methods Enzymol. 1988;157:190–206. doi: 10.1016/0076-6879(88)57075-1. [DOI] [PubMed] [Google Scholar]
- de Meis L. Fast efflux of Ca2+ mediated by the sarcoplasmic reticulum Ca2(+)-ATPase. J Biol Chem. 1991 Mar 25;266(9):5736–5742. [PubMed] [Google Scholar]
- de Meis L., Inesi G. Functional evidence of a transmembrane channel within the Ca2+ transport ATPase of sarcoplasmic reticulum. FEBS Lett. 1992 Mar 24;299(1):33–35. doi: 10.1016/0014-5793(92)80093-v. [DOI] [PubMed] [Google Scholar]
- de Meis L., Suzano V. A., Inesi G. Functional interactions of catalytic site and transmembrane channel in the sarcoplasmic reticulum ATPase. J Biol Chem. 1990 Nov 5;265(31):18848–18851. [PubMed] [Google Scholar]
- de Meis L., Suzano V. A. Uncoupling of muscle and blood platelets Ca2+ transport ATPases by heparin. Regulation by K+. J Biol Chem. 1994 May 20;269(20):14525–14529. [PubMed] [Google Scholar]
- de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]