Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Nov 15;312(Pt 1):23–30. doi: 10.1042/bj3120023

Characterization of N-ethylmaleimide-sensitive thiol groups required for the GTP-dependent fusion of endoplasmic reticulum membranes.

A V Sokoloff 1, T Whalley 1, J Zimmerberg 1
PMCID: PMC1136222  PMID: 7492317

Abstract

The GTP-dependent fusion activity of endoplasmic reticulum membranes is thought to be required for the structural maintenance and post-mitotic regeneration of the endoplasmic reticulum. This fusion is sensitive to the thiol-alkylating agent N-ethylmaleimide. In many intracellular fusion events N-ethylmaleimide-sensitivity is associated with a homotrimeric ATPase called N-ethylmaleimide-sensitive fusion protein or NSF. The addition of cytosol containing NSF is known to restore fusion activity to N-ethylmaleimide-treated membranes. We found that the inhibition of fusion of rat liver endoplasmic reticulum membranes (microsomes) by N-ethylmaleimide was not reversed by the addition of untreated cytosol. Fusion was also unaffected by treatment with a buffer known to remove NSF from membranes. Accordingly, no membrane-associated NSF was detected by immunoblot analysis. These data suggest that microsome fusion requires an N-ethylmaleimide-sensitive component distinct from NSF. This component was tightly associated with the membranes, so we used a number of chemical probes to characterize it in situ. Its thiol groups did not appear to be part of a GTP-binding site. They showed relatively low reactivity with sodium periodate, which induces the formation of disulphide bonds between proximate thiol groups. The thiols were not protected against N-ethylmaleimide by Zn2+, a potent inhibitor of fusion which is known to efficiently co-ordinate thiol groups. To characterize the topology of the fusion-related thiol groups we used bulky thiol-specific reagents prepared by conjugating BSA or 10 kDa aminodextran to the bifunctional reagent N-succinimidyl 3-(2-pyridyldithio)propionate. The inhibition of fusion by these reagents indicated that these thiols are highly exposed on the membranes. This exposure might be important for the function of these groups during GTP-triggered fusion.

Full text

PDF
23

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Dunphy W. G., Braell W. A., Rothman J. E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984 Dec;39(2 Pt 1):405–416. doi: 10.1016/0092-8674(84)90019-9. [DOI] [PubMed] [Google Scholar]
  2. Beckers C. J., Block M. R., Glick B. S., Rothman J. E., Balch W. E. Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein. Nature. 1989 Jun 1;339(6223):397–398. doi: 10.1038/339397a0. [DOI] [PubMed] [Google Scholar]
  3. Block M. R., Glick B. S., Wilcox C. A., Wieland F. T., Rothman J. E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7852–7856. doi: 10.1073/pnas.85.21.7852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlsson J., Drevin H., Axén R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem J. 1978 Sep 1;173(3):723–737. doi: 10.1042/bj1730723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chernomordik L. V., Vogel S. S., Sokoloff A., Onaran H. O., Leikina E. A., Zimmerberg J. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 1993 Feb 22;318(1):71–76. doi: 10.1016/0014-5793(93)81330-3. [DOI] [PubMed] [Google Scholar]
  6. Clary D. O., Griff I. C., Rothman J. E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell. 1990 May 18;61(4):709–721. doi: 10.1016/0092-8674(90)90482-t. [DOI] [PubMed] [Google Scholar]
  7. Comerford J. G., Dawson A. P. The effect of limited proteolysis on GTP-dependent Ca2+ efflux and GTP-dependent fusion in rat liver microsomal vesicles. Biochem J. 1989 Mar 15;258(3):823–829. doi: 10.1042/bj2580823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dabora S. L., Sheetz M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988 Jul 1;54(1):27–35. doi: 10.1016/0092-8674(88)90176-6. [DOI] [PubMed] [Google Scholar]
  9. Dawson A. P., Hills G., Comerford J. G. The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles. Biochem J. 1987 May 15;244(1):87–92. doi: 10.1042/bj2440087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dawson A. P., Irvine R. F. Inositol (1,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biochem Biophys Res Commun. 1984 May 16;120(3):858–864. doi: 10.1016/s0006-291x(84)80186-2. [DOI] [PubMed] [Google Scholar]
  11. Diaz R., Mayorga L. S., Weidman P. J., Rothman J. E., Stahl P. D. Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature. 1989 Jun 1;339(6223):398–400. doi: 10.1038/339398a0. [DOI] [PubMed] [Google Scholar]
  12. Goda Y., Pfeffer S. R. Identification of a novel, N-ethylmaleimide-sensitive cytosolic factor required for vesicular transport from endosomes to the trans-Golgi network in vitro. J Cell Biol. 1991 Mar;112(5):823–831. doi: 10.1083/jcb.112.5.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hampe W., Zimmermann P., Schulz I. GTP-induced fusion of isolated pancreatic microsomal vesicles is increased by acidification of the vesicle lumen. FEBS Lett. 1990 Oct 1;271(1-2):62–66. doi: 10.1016/0014-5793(90)80372-p. [DOI] [PubMed] [Google Scholar]
  14. Heller K. B., Poser B., Haest C. W., Deuticke B. Oxidative stress of human erythrocytes by iodate and periodate. Reversible formation of aqueous membrane pores due to SH-group oxidation. Biochim Biophys Acta. 1984 Oct 17;777(1):107–116. doi: 10.1016/0005-2736(84)90502-9. [DOI] [PubMed] [Google Scholar]
  15. Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984 Nov 20;23(24):5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
  16. Hutchison K. A., Matić G., Meshinchi S., Bresnick E. H., Pratt W. B. Redox manipulation of DNA binding activity and BuGR epitope reactivity of the glucocorticoid receptor. J Biol Chem. 1991 Jun 5;266(16):10505–10509. [PubMed] [Google Scholar]
  17. Latterich M., Schekman R. The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion. Cell. 1994 Jul 15;78(1):87–98. doi: 10.1016/0092-8674(94)90575-4. [DOI] [PubMed] [Google Scholar]
  18. Malhotra V., Orci L., Glick B. S., Block M. R., Rothman J. E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell. 1988 Jul 15;54(2):221–227. doi: 10.1016/0092-8674(88)90554-5. [DOI] [PubMed] [Google Scholar]
  19. Monsigny M., Petit C., Roche A. C. Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal Biochem. 1988 Dec;175(2):525–530. doi: 10.1016/0003-2697(88)90578-7. [DOI] [PubMed] [Google Scholar]
  20. PORTER K. R., MACHADO R. D. Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip. J Biophys Biochem Cytol. 1960 Feb;7:167–180. doi: 10.1083/jcb.7.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paiement J., Beaufay H., Godelaine D. Coalescence of microsomal vesicles from rat liver: a phenomenon occurring in parallel with enhancement of the glycosylation activity during incubation of stripped rough microsomes with GTP. J Cell Biol. 1980 Jul;86(1):29–37. doi: 10.1083/jcb.86.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paiement J. Physiological concentrations of GTP stimulate fusion of the endoplasmic reticulum and the nuclear envelope. Exp Cell Res. 1984 Apr;151(2):354–366. doi: 10.1016/0014-4827(84)90386-0. [DOI] [PubMed] [Google Scholar]
  23. Paiement J., Rindress D., Smith C. E., Poliquin L., Bergeron J. J. Properties of a GTP sensitive microdomain in rough microsomes. Biochim Biophys Acta. 1987 Mar 26;898(1):6–22. doi: 10.1016/0005-2736(87)90105-2. [DOI] [PubMed] [Google Scholar]
  24. Podbilewicz B., Mellman I. ATP and cytosol requirements for transferrin recycling in intact and disrupted MDCK cells. EMBO J. 1990 Nov;9(11):3477–3487. doi: 10.1002/j.1460-2075.1990.tb07556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rippa M., Bellini T., Signorini M., Dallocchio F. Evidence for multiple pairs of vicinal thiols in some proteins. J Biol Chem. 1981 Jan 10;256(1):451–455. [PubMed] [Google Scholar]
  26. Rodriguez L., Stirling C. J., Woodman P. G. Multiple N-ethylmaleimide-sensitive components are required for endosomal vesicle fusion. Mol Biol Cell. 1994 Jul;5(7):773–783. doi: 10.1091/mbc.5.7.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ross P. D., Minton A. P. The effect of non-aggregating proteins upon the gelation of sickle cell hemoglobin: model calculations and data analysis. Biochem Biophys Res Commun. 1979 Jun 27;88(4):1308–1314. doi: 10.1016/0006-291x(79)91123-9. [DOI] [PubMed] [Google Scholar]
  28. Rothman J. E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992 Jan 30;355(6359):409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
  29. Suprynowicz F. A., Prusmack C., Whalley T. Ca2+ triggers premature inactivation of the cdc2 protein kinase in permeabilized sea urchin embryos. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6176–6180. doi: 10.1073/pnas.91.13.6176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  31. Tagaya M., Wilson D. W., Brunner M., Arango N., Rothman J. E. Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J Biol Chem. 1993 Feb 5;268(4):2662–2666. [PubMed] [Google Scholar]
  32. Traub L. M., Ostrom J. A., Kornfeld S. Biochemical dissection of AP-1 recruitment onto Golgi membranes. J Cell Biol. 1993 Nov;123(3):561–573. doi: 10.1083/jcb.123.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vale R. D., Hotani H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J Cell Biol. 1988 Dec;107(6 Pt 1):2233–2241. doi: 10.1083/jcb.107.6.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vallee B. L., Falchuk K. H. The biochemical basis of zinc physiology. Physiol Rev. 1993 Jan;73(1):79–118. doi: 10.1152/physrev.1993.73.1.79. [DOI] [PubMed] [Google Scholar]
  35. Wattenberg B. W., Raub T. J., Hiebsch R. R., Weidman P. J. The activity of Golgi transport vesicles depends on the presence of the N-ethylmaleimide-sensitive factor (NSF) and a soluble NSF attachment protein (alpha SNAP) during vesicle formation. J Cell Biol. 1992 Sep;118(6):1321–1332. doi: 10.1083/jcb.118.6.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weidman P. J., Melançon P., Block M. R., Rothman J. E. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J Cell Biol. 1989 May;108(5):1589–1596. doi: 10.1083/jcb.108.5.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  38. Whalley T., Sokoloff A. The N-ethylmaleimide-sensitive protein thiol groups necessary for sea-urchin egg cortical-granule exocytosis are highly exposed to the medium and are required for triggering by Ca2+. Biochem J. 1994 Sep 1;302(Pt 2):391–396. doi: 10.1042/bj3020391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Whiteheart S. W., Rossnagel K., Buhrow S. A., Brunner M., Jaenicke R., Rothman J. E. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J Cell Biol. 1994 Aug;126(4):945–954. doi: 10.1083/jcb.126.4.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wilson D. W., Whiteheart S. W., Wiedmann M., Brunner M., Rothman J. E. A multisubunit particle implicated in membrane fusion. J Cell Biol. 1992 May;117(3):531–538. doi: 10.1083/jcb.117.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wu C. W., Yarbrough L. R. N-(1-pyrene)maleimide: a fluorescent cross-linking reagent. Biochemistry. 1976 Jun 29;15(13):2863–2868. doi: 10.1021/bi00658a025. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES