Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Nov 15;312(Pt 1):99–105. doi: 10.1042/bj3120099

The nature of topogenic sequences determines the transport competence of topological mutants of neutral endopeptidase-24.11.

X F Yang 1, P Crine 1, G Boileau 1
PMCID: PMC1136232  PMID: 7492341

Abstract

Type II integral membrane proteins are anchored by a signal-peptide/membrane-anchor domain (SA domain) located near their N-terminus, whereas type I membrane proteins are anchored by stop-transfer sequences usually located near the C-terminus. In this study we have attempted to transform neutral endopeptidase-24.11 (EC 3.4.24.11; NEP), a type II membrane protein, into a type I membrane protein. Three type I mutant proteins were constructed by fusion of topogenic sequences to the C-terminus of SecNEP, a soluble form of NEP. The first two type I mutants, SecNEP-TMC and SecNEP-TMIC, were constructed by fusing in frame the cytosolic and SA domains of NEP to the C-terminus of SecNEP. These two fusion proteins differ only in the orientation of the cytosolic tail. The third type I mutant, SecNEP-ACE, was constructed by fusing in frame the stop-transfer and cytosolic domains of angiotensin I-converting enzyme (EC 3.4.15.1; ACE) to the C-terminus of SecNEP. Our results suggest that: (1) the NEP ectodomain can be anchored with a type I topology in the endoplasmic reticulum (ER) membrane by both NEP and ACE topogenic sequences; (2) SecNEP-TMC and SecNEP-TMIC were transport-incompetent and needed proteolytic cleavage in the C-terminal region to leave the ER, whereas SecNEP-ACE was transported out of the ER as a type I membrane protein. Therefore we concluded that the nature of topogenic sequences determines the transport-competence of topological mutants of neutral endopeptidase-24.11.

Full text

PDF
99

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams G. A., Rose J. K. Incorporation of a charged amino acid into the membrane-spanning domain blocks cell surface transport but not membrane anchoring of a viral glycoprotein. Mol Cell Biol. 1985 Jun;5(6):1442–1448. doi: 10.1128/mcb.5.6.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aubry M., Zollinger M., Fortin S., Vénien C., LeGrimellec C., Crine P. Monoclonal antibodies as probes for the transmembrane structure of neutral endopeptidase 24.11 ('enkephalinase'). Biochim Biophys Acta. 1988 Oct 13;967(1):56–64. doi: 10.1016/0304-4165(88)90188-2. [DOI] [PubMed] [Google Scholar]
  3. Beaumont A., Le Moual H., Boileau G., Crine P., Roques B. P. Evidence that both arginine 102 and arginine 747 are involved in substrate binding to neutral endopeptidase (EC 3.4.24.11). J Biol Chem. 1991 Jan 5;266(1):214–220. [PubMed] [Google Scholar]
  4. Beldent V., Michaud A., Wei L., Chauvet M. T., Corvol P. Proteolytic release of human angiotensin-converting enzyme. Localization of the cleavage site. J Biol Chem. 1993 Dec 15;268(35):26428–26434. [PubMed] [Google Scholar]
  5. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1496–1500. doi: 10.1073/pnas.77.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coleman J., Inukai M., Inouye M. Dual functions of the signal peptide in protein transfer across the membrane. Cell. 1985 Nov;43(1):351–360. doi: 10.1016/0092-8674(85)90040-6. [DOI] [PubMed] [Google Scholar]
  7. Corbeil D., Boileau G., Lemay G., Crine P. Expression and polarized apical secretion in Madin-Darby canine kidney cells of a recombinant soluble form of neutral endopeptidase lacking the cytosolic and transmembrane domains. J Biol Chem. 1992 Feb 5;267(4):2798–2801. [PubMed] [Google Scholar]
  8. Devault A., Lazure C., Nault C., Le Moual H., Seidah N. G., Chrétien M., Kahn P., Powell J., Mallet J., Beaumont A. Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J. 1987 May;6(5):1317–1322. doi: 10.1002/j.1460-2075.1987.tb02370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devault A., Nault C., Zollinger M., Fournie-Zaluski M. C., Roques B. P., Crine P., Boileau G. Expression of neutral endopeptidase (enkephalinase) in heterologous COS-1 cells. Characterization of the recombinant enzyme and evidence for a glutamic acid residue at the active site. J Biol Chem. 1988 Mar 15;263(8):4033–4040. [PubMed] [Google Scholar]
  10. Finidori J., Rizzolo L., Gonzalez A., Kreibich G., Adesnik M., Sabatini D. D. The influenza hemagglutinin insertion signal is not cleaved and does not halt translocation when presented to the endoplasmic reticulum membrane as part of a translocating polypeptide. J Cell Biol. 1987 Jun;104(6):1705–1714. doi: 10.1083/jcb.104.6.1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gafvelin G., von Heijne G. Topological "frustration" in multispanning E. coli inner membrane proteins. Cell. 1994 May 6;77(3):401–412. doi: 10.1016/0092-8674(94)90155-4. [DOI] [PubMed] [Google Scholar]
  12. Hartmann E., Rapoport T. A., Lodish H. F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5786–5790. doi: 10.1073/pnas.86.15.5786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hennecke S., Cosson P. Role of transmembrane domains in assembly and intracellular transport of the CD8 molecule. J Biol Chem. 1993 Dec 15;268(35):26607–26612. [PubMed] [Google Scholar]
  14. High S., Dobberstein B. Mechanisms that determine the transmembrane disposition of proteins. Curr Opin Cell Biol. 1992 Aug;4(4):581–586. doi: 10.1016/0955-0674(92)90075-n. [DOI] [PubMed] [Google Scholar]
  15. Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  16. Jalal F., Lemay G., Zollinger M., Berteloot A., Boileau G., Crine P. Neutral endopeptidase, a major brush border protein of the kidney proximal nephron, is directly targeted to the apical domain when expressed in Madin-Darby canine kidney cells. J Biol Chem. 1991 Oct 15;266(29):19826–19832. [PubMed] [Google Scholar]
  17. Klausner R. D., Lippincott-Schwartz J., Bonifacino J. S. The T cell antigen receptor: insights into organelle biology. Annu Rev Cell Biol. 1990;6:403–431. doi: 10.1146/annurev.cb.06.110190.002155. [DOI] [PubMed] [Google Scholar]
  18. Kundu A., Jabbar M. A., Nayak D. P. Cell surface transport, oligomerization, and endocytosis of chimeric type II glycoproteins: role of cytoplasmic and anchor domains. Mol Cell Biol. 1991 May;11(5):2675–2685. doi: 10.1128/mcb.11.5.2675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Landolt-Marticorena C., Williams K. A., Deber C. M., Reithmeier R. A. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J Mol Biol. 1993 Feb 5;229(3):602–608. doi: 10.1006/jmbi.1993.1066. [DOI] [PubMed] [Google Scholar]
  20. Lemay G., Waksman G., Roques B. P., Crine P., Boileau G. Fusion of a cleavable signal peptide to the ectodomain of neutral endopeptidase (EC 3.4.24.11) results in the secretion of an active enzyme in COS-1 cells. J Biol Chem. 1989 Sep 15;264(26):15620–15623. [PubMed] [Google Scholar]
  21. Lemay G., Zollinger M., Waksman G., Roques B. P., Crine P., Boileau G. Recombinant neutral endopeptidase-24.11 expressed in mouse neuroblastoma cells is associated with neurite membranes. Biochem J. 1990 Apr 15;267(2):447–452. doi: 10.1042/bj2670447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lippincott-Schwartz J., Yuan L., Tipper C., Amherdt M., Orci L., Klausner R. D. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell. 1991 Nov 1;67(3):601–616. doi: 10.1016/0092-8674(91)90534-6. [DOI] [PubMed] [Google Scholar]
  23. McQueen N. L., Nayak D. P., Stephens E. B., Compans R. W. Basolateral expression of a chimeric protein in which the transmembrane and cytoplasmic domains of vesicular stomatitis virus G protein have been replaced by those of the influenza virus hemagglutinin. J Biol Chem. 1987 Nov 25;262(33):16233–16240. [PubMed] [Google Scholar]
  24. Milhiet P. E., Corbeil D., Simon V., Kenny A. J., Crine P., Boileau G. Expression of rat endopeptidase-24.18 in COS-1 cells: membrane topology and activity. Biochem J. 1994 May 15;300(Pt 1):37–43. doi: 10.1042/bj3000037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murray M. G., Bradley J., Yang X. F., Wimmer E., Moss E. G., Racaniello V. R. Poliovirus host range is determined by a short amino acid sequence in neutralization antigenic site I. Science. 1988 Jul 8;241(4862):213–215. doi: 10.1126/science.2838906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noël G., Zollinger L., Larivière N., Nault C., Crine P., Boileau G. Expression of porcine pro-opiomelanocortin cDNA in heterologous monkey kidney cells. Biosynthesis and secretion of the prohormone without processing. J Biol Chem. 1987 Feb 5;262(4):1876–1881. [PubMed] [Google Scholar]
  27. Parks G. D., Lamb R. A. Role of NH2-terminal positively charged residues in establishing membrane protein topology. J Biol Chem. 1993 Sep 5;268(25):19101–19109. [PubMed] [Google Scholar]
  28. Parks G. D., Lamb R. A. Topology of eukaryotic type II membrane proteins: importance of N-terminal positively charged residues flanking the hydrophobic domain. Cell. 1991 Feb 22;64(4):777–787. doi: 10.1016/0092-8674(91)90507-u. [DOI] [PubMed] [Google Scholar]
  29. Rothman R. E., Andrews D. W., Calayag M. C., Lingappa V. R. Construction of defined polytopic integral transmembrane proteins. The role of signal and stop transfer sequence permutations. J Biol Chem. 1988 Jul 25;263(21):10470–10480. [PubMed] [Google Scholar]
  30. Sakaguchi M., Tomiyoshi R., Kuroiwa T., Mihara K., Omura T. Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):16–19. doi: 10.1073/pnas.89.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Singer S. J. The structure and insertion of integral proteins in membranes. Annu Rev Cell Biol. 1990;6:247–296. doi: 10.1146/annurev.cb.06.110190.001335. [DOI] [PubMed] [Google Scholar]
  32. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spiess M., Handschin C., Baker K. P. Stop-transfer activity of hydrophobic sequences depends on the translation system. J Biol Chem. 1989 Nov 15;264(32):19117–19124. [PubMed] [Google Scholar]
  34. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wei L., Alhenc-Gelas F., Soubrier F., Michaud A., Corvol P., Clauser E. Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem. 1991 Mar 25;266(9):5540–5546. [PubMed] [Google Scholar]
  37. Zerial M., Huylebroeck D., Garoff H. Foreign transmembrane peptides replacing the internal signal sequence of transferrin receptor allow its translocation and membrane binding. Cell. 1987 Jan 16;48(1):147–155. doi: 10.1016/0092-8674(87)90365-5. [DOI] [PubMed] [Google Scholar]
  38. von Heijne G. Membrane protein assembly: rules of the game. Bioessays. 1995 Jan;17(1):25–30. doi: 10.1002/bies.950170107. [DOI] [PubMed] [Google Scholar]
  39. von Heijne G. Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct. 1994;23:167–192. doi: 10.1146/annurev.bb.23.060194.001123. [DOI] [PubMed] [Google Scholar]
  40. von Heijne G. The signal peptide. J Membr Biol. 1990 May;115(3):195–201. doi: 10.1007/BF01868635. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES