Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Nov 15;312(Pt 1):287–292. doi: 10.1042/bj3120287

Glycerol 3-phosphate-induced ATP production in intact mitochondria from pancreatic B-cells.

L A Idahl 1, N Lembert 1
PMCID: PMC1136257  PMID: 7492326

Abstract

A bioluminescent method is presented that allows monitoring of ATP production from mitochondria corresponding to one islet of Langerhans per sample. In mitochondria from ob/ob mice Ca2+ stimulates the ATP production in the presence of L-glycerol 3-phosphate (GP) by reducing the Km for GP by one order of magnitude to about 3 mM. Maximal ATP production in the presence of Ca2+ (200 nM) is obtained at 10 mM GP. The free calcium concentration required to reach half-maximal stimulation (K0.5Ca2+) depends on the GP concentration, thus half-maximal effects are observed at about 80 nM at low GP (1 mM) and 10 nM at high GP (10 mM). Sodium can replace Ca2+ as a stimulator of GP-induced ATP production. It activates ADP phosphorylation by B-cell mitochondria in a sigmoidal concentration-dependent manner in the absence of Cs2+ (Hill coefficient 2.3 +/- 0.2) but does not change K0.5ca2+ nor the maximal mitochondrial activity. Ca2+ concentrations higher than 300 nM are inhibitory at all tested substrate concentrations. Mitochondria from ob/ob mice showed no functional defect when compared with normal controls. It is concluded that activation of the glycerol phosphate shuttle may not be the main coupling site for glucose-induced insulin release at maximal cytoplasmic Ca2+ levels.

Full text

PDF
287

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali L., Grapengiesser E., Gylfe E., Hellman B., Lund P. E. Free and bound sodium in pancreatic beta-cells exposed to glucose and tolbutamide. Biochem Biophys Res Commun. 1989 Oct 16;164(1):212–218. doi: 10.1016/0006-291x(89)91704-x. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft F. M. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci. 1988;11:97–118. doi: 10.1146/annurev.ne.11.030188.000525. [DOI] [PubMed] [Google Scholar]
  3. Brown L. J., MacDonald M. J., Lehn D. A., Moran S. M. Sequence of rat mitochondrial glycerol-3-phosphate dehydrogenase cDNA. Evidence for EF-hand calcium-binding domains. J Biol Chem. 1994 May 20;269(20):14363–14366. [PubMed] [Google Scholar]
  4. Grapengiesser E., Gylfe E., Hellman B. Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1299–1304. doi: 10.1016/s0006-291x(88)80503-5. [DOI] [PubMed] [Google Scholar]
  5. Grapengiesser E., Gylfe E., Hellman B. Three types of cytoplasmic Ca2+ oscillations in stimulated pancreatic beta-cells. Arch Biochem Biophys. 1989 Jan;268(1):404–407. doi: 10.1016/0003-9861(89)90602-4. [DOI] [PubMed] [Google Scholar]
  6. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  7. Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
  8. Hellman B., Idahl L. A., Danielsson A. Adenosine triphosphate levels of mammalian pancreatic B cells after stimulation with glucose and hypoglycemic sulfonylureas. Diabetes. 1969 Aug;18(8):509–516. doi: 10.2337/diab.18.8.509. [DOI] [PubMed] [Google Scholar]
  9. Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. The pancreatic beta-cell recognition of insulin secretagogues. Comparisons of glucose with glyceraldehyde isomers and dihydroxyacetone. Arch Biochem Biophys. 1974 Jun;162(2):448–457. doi: 10.1016/0003-9861(74)90204-5. [DOI] [PubMed] [Google Scholar]
  10. Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. The pancreatic beta-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release. Biochem J. 1974 Jan;138(1):33–45. doi: 10.1042/bj1380033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hellman B., Idahl L. A., Sehlin J., Täljedal I. B. Influence of anoxia on glucose metabolism in pancreatic islets: lack of correlation between fructose-1,6-diphosphate and apparent glycolytic flux. Diabetologia. 1975 Dec;11(6):495–500. doi: 10.1007/BF01222098. [DOI] [PubMed] [Google Scholar]
  12. Hellman B. Studies in obese-hyperglycemic mice. Ann N Y Acad Sci. 1965 Oct 8;131(1):541–558. doi: 10.1111/j.1749-6632.1965.tb34819.x. [DOI] [PubMed] [Google Scholar]
  13. Igbavboa U., Pfeiffer D. R. EGTA inhibits reverse uniport-dependent Ca2+ release from uncoupled mitochondria. Possible regulation of the Ca2+ uniporter by a Ca2+ binding site on the cytoplasmic side of the inner membrane. J Biol Chem. 1988 Jan 25;263(3):1405–1412. [PubMed] [Google Scholar]
  14. Johansson H., Larsson R., Nygren P., Lindh E., Rastad J., Akerström G., Gylfe E. Cytoplasmic Ca2+ concentration of single normal human and bovine parathyroid cells measured by dual wavelength microfluorometry. Biosci Rep. 1987 Sep;7(9):705–712. doi: 10.1007/BF01116863. [DOI] [PubMed] [Google Scholar]
  15. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  16. Lembert N., Idahl L. A. Regulatory effects of ATP and luciferin on firefly luciferase activity. Biochem J. 1995 Feb 1;305(Pt 3):929–933. doi: 10.1042/bj3050929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MacDonald M. J. Calcium activation of pancreatic islet mitochondrial glycerol phosphate dehydrogenase. Horm Metab Res. 1982 Dec;14(12):678–679. doi: 10.1055/s-2007-1019117. [DOI] [PubMed] [Google Scholar]
  18. MacDonald M. J. High content of mitochondrial glycerol-3-phosphate dehydrogenase in pancreatic islets and its inhibition by diazoxide. J Biol Chem. 1981 Aug 25;256(16):8287–8290. [PubMed] [Google Scholar]
  19. Malaisse W. J. Glucose-sensing by the pancreatic B-cell: the mitochondrial part. Int J Biochem. 1992 May;24(5):693–701. doi: 10.1016/0020-711x(92)90002-i. [DOI] [PubMed] [Google Scholar]
  20. Matschinsky F. M., Ghosh A. K., Meglasson M. D., Prentki M., June V., von Allman D. Metabolic concomitants in pure, pancreatic beta cells during glucose-stimulated insulin secretion. J Biol Chem. 1986 Oct 25;261(30):14057–14061. [PubMed] [Google Scholar]
  21. McCormack J. G. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. Biochem J. 1985 Nov 1;231(3):581–595. doi: 10.1042/bj2310581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
  23. Meissner H. P., Henquin J. C., Preissler M. Potassium dependence of the membrane potential of pancreatic B-cells. FEBS Lett. 1978 Oct 1;94(1):87–89. doi: 10.1016/0014-5793(78)80912-0. [DOI] [PubMed] [Google Scholar]
  24. Pershadsingh H. A., McDonald J. M. A high affinity calcium-stimulated magnesium-dependent adenosine triphosphatase in rat adipocyte plasma membranes. J Biol Chem. 1980 May 10;255(9):4087–4093. [PubMed] [Google Scholar]
  25. Rasschaert J., Malaisse W. J. Hexose metabolism in pancreatic islets. Glucose-induced and Ca(2+)-dependent activation of FAD-glycerophosphate dehydrogenase. Biochem J. 1991 Sep 1;278(Pt 2):335–340. doi: 10.1042/bj2780335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rutter G. A., Pralong W. F., Wollheim C. B. Regulation of mitochondrial glycerol-phosphate dehydrogenase by Ca2+ within electropermeabilized insulin-secreting cells (INS-1). Biochim Biophys Acta. 1992 Dec 15;1175(1):107–113. doi: 10.1016/0167-4889(92)90016-5. [DOI] [PubMed] [Google Scholar]
  27. Sehlin J., Täljedal I. B. Sodium uptake by microdissected pancreatic islets: effects of ouabain and chloromercuribenzene-p-sulphonic acid. FEBS Lett. 1974 Feb 15;39(2):209–213. doi: 10.1016/0014-5793(74)80052-9. [DOI] [PubMed] [Google Scholar]
  28. Wibom R., Lundin A., Hultman E. A sensitive method for measuring ATP-formation in rat muscle mitochondria. Scand J Clin Lab Invest. 1990 Apr;50(2):143–152. doi: 10.1080/00365519009089146. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES