Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Dec 1;312(Pt 2):411–417. doi: 10.1042/bj3120411

Alkylphosphocholines inhibit choline uptake and phosphatidylcholine biosynthesis in rat sympathetic neurons and impair axonal extension.

E Posse de Chaves 1, D E Vance 1, R B Campenot 1, J E Vance 1
PMCID: PMC1136277  PMID: 8526849

Abstract

At least 50% of the major axonal membrane lipid, phosphatidylcholine, of rat sympathetic neurons is synthesized in situ in axons [Posse de Chaves, Vance, Campenot and Vance (1995) J. Cell Biol. 128, 913-918]. In the same study we reported that, in a choline-deficient model for neuron growth, phosphatidylcholine synthesis in cell bodies is neither necessary nor sufficient for growth of distal axons. Rather, the local synthesis of phosphatidylcholine in distal axons is required for normal axon growth. We have now used three alkylphosphocholines (hexadecylphosphocholine, dodecylphosphocholine and octadecylphosphocholine) as inhibitors of PtdCho biosynthesis in a compartmented model for culture of rat sympathetic neurons. The experiments reveal that alkylphosphocholines decrease the uptake of choline into these neurons and inhibit PtdCho synthesis, but not via an effect on the activity of the enzyme CTP: phosphocholine cytidylyltransferase. We also show that when the distal axons, but not the cell bodies, are exposed to alkylphosphocholines, axonal elongation is inhibited, which is consistent with the hypothesis that phosphatidylcholine synthesis in axons, but not in cell bodies, is required for axonal elongation. The inhibitory effect of alkylphosphocholines on axon growth is most likely not mediated via a decrease in the activity of protein kinase C, since when this enzyme activity is down-regulated by treatment of the cells with phorbol ester, the alkylphosphocholines retain their ability to inhibit axonal growth.

Full text

PDF
411

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballester R., Rosen O. M. Fate of immunoprecipitable protein kinase C in GH3 cells treated with phorbol 12-myristate 13-acetate. J Biol Chem. 1985 Dec 5;260(28):15194–15199. [PubMed] [Google Scholar]
  2. Campenot R. B. Development of sympathetic neurons in compartmentalized cultures. Il Local control of neurite growth by nerve growth factor. Dev Biol. 1982 Sep;93(1):1–12. doi: 10.1016/0012-1606(82)90232-9. [DOI] [PubMed] [Google Scholar]
  3. Campenot R. B., Draker D. D. Growth of sympathetic nerve fibers in culture does not require extracellular calcium. Neuron. 1989 Dec;3(6):733–743. doi: 10.1016/0896-6273(89)90242-0. [DOI] [PubMed] [Google Scholar]
  4. Campenot R. B., Draker D. D., Senger D. L. Evidence that protein kinase C activities involved in regulating neurite growth are localized to distal neurites. J Neurochem. 1994 Sep;63(3):868–878. doi: 10.1046/j.1471-4159.1994.63030868.x. [DOI] [PubMed] [Google Scholar]
  5. Campenot R. B. Independent control of the local environment of somas and neurites. Methods Enzymol. 1979;58:302–307. doi: 10.1016/s0076-6879(79)58146-4. [DOI] [PubMed] [Google Scholar]
  6. Campenot R. B., Walji A. H., Draker D. D. Effects of sphingosine, staurosporine, and phorbol ester on neurites of rat sympathetic neurons growing in compartmented cultures. J Neurosci. 1991 Apr;11(4):1126–1139. doi: 10.1523/JNEUROSCI.11-04-01126.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
  8. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  9. Fleer E. A., Berkovic D., Eibl H., Unger C. Investigations on the cellular uptake of hexadecylphosphocholine. Lipids. 1993 Aug;28(8):731–736. doi: 10.1007/BF02535995. [DOI] [PubMed] [Google Scholar]
  10. Geilen C. C., Haase A., Wieder T., Arndt D., Zeisig R., Reutter W. Phospholipid analogues: side chain- and polar head group-dependent effects on phosphatidylcholine biosynthesis. J Lipid Res. 1994 Apr;35(4):625–632. [PubMed] [Google Scholar]
  11. Geilen C. C., Haase R., Buchner K., Wieder T., Hucho F., Reutter W. The phospholipid analogue, hexadecylphosphocholine, inhibits protein kinase C in vitro and antagonises phorbol ester-stimulated cell proliferation. Eur J Cancer. 1991;27(12):1650–1653. doi: 10.1016/0277-5379(91)90438-j. [DOI] [PubMed] [Google Scholar]
  12. Geilen C. C., Wieder T., Haase A., Reutter W., Morré D. M., Morré D. J. Uptake, subcellular distribution and metabolism of the phospholipid analogue hexadecylphosphocholine in MDCK cells. Biochim Biophys Acta. 1994 Feb 10;1211(1):14–22. doi: 10.1016/0005-2760(94)90133-3. [DOI] [PubMed] [Google Scholar]
  13. Geilen C. C., Wieder T., Reutter W. Hexadecylphosphocholine inhibits translocation of CTP:choline-phosphate cytidylyltransferase in Madin-Darby canine kidney cells. J Biol Chem. 1992 Apr 5;267(10):6719–6724. [PubMed] [Google Scholar]
  14. Guyenet P., Lefresne P., Rossier J., Beaujouan J. C., Glowinski J. Inhibition by hemicholinium-3 of (14C)acetylcholine synthesis and (3H)choline high-affinity uptake in rat striatal synaptosomes. Mol Pharmacol. 1973 Sep;9(5):630–639. [PubMed] [Google Scholar]
  15. Haase R., Wieder T., Geilen C. C., Reutter W. The phospholipid analogue hexadecylphosphocholine inhibits phosphatidylcholine biosynthesis in Madin-Darby canine kidney cells. FEBS Lett. 1991 Aug 19;288(1-2):129–132. doi: 10.1016/0014-5793(91)81018-4. [DOI] [PubMed] [Google Scholar]
  16. Hawrot E., Patterson P. H. Long-term culture of dissociated sympathetic neurons. Methods Enzymol. 1979;58:574–584. doi: 10.1016/s0076-6879(79)58174-9. [DOI] [PubMed] [Google Scholar]
  17. Heasley L. E., Johnson G. L. Regulation of protein kinase C by nerve growth factor, epidermal growth factor, and phorbol esters in PC12 pheochromocytoma cells. J Biol Chem. 1989 May 25;264(15):8646–8652. [PubMed] [Google Scholar]
  18. Houweling M., Jamil H., Hatch G. M., Vance D. E. Dephosphorylation of CTP-phosphocholine cytidylyltransferase is not required for binding to membranes. J Biol Chem. 1994 Mar 11;269(10):7544–7551. [PubMed] [Google Scholar]
  19. Kuhar M. J., Murrin L. C. Sodium-dependent, high affinity choline uptake. J Neurochem. 1978 Jan;30(1):15–21. doi: 10.1111/j.1471-4159.1978.tb07029.x. [DOI] [PubMed] [Google Scholar]
  20. Matthies H. J., Palfrey H. C., Hirning L. D., Miller R. J. Down regulation of protein kinase C in neuronal cells: effects on neurotransmitter release. J Neurosci. 1987 Apr;7(4):1198–1206. doi: 10.1523/JNEUROSCI.07-04-01198.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  22. Parker P. J., Kour G., Marais R. M., Mitchell F., Pears C., Schaap D., Stabel S., Webster C. Protein kinase C--a family affair. Mol Cell Endocrinol. 1989 Aug;65(1-2):1–11. doi: 10.1016/0303-7207(89)90159-7. [DOI] [PubMed] [Google Scholar]
  23. Pfenninger K. H., Johnson M. P. Membrane biogenesis in the sprouting neuron. I. Selective transfer of newly synthesized phospholipid into the growing neurite. J Cell Biol. 1983 Oct;97(4):1038–1042. doi: 10.1083/jcb.97.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Posse de Chaves E., Vance D. E., Campenot R. B., Vance J. E. Axonal synthesis of phosphatidylcholine is required for normal axonal growth in rat sympathetic neurons. J Cell Biol. 1995 Mar;128(5):913–918. doi: 10.1083/jcb.128.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rylett R. J., Goddard S., Lambros A. Regulation of expression of cholinergic neuronal phenotypic markers in neuroblastoma LA-N-2. J Neurochem. 1993 Oct;61(4):1388–1397. doi: 10.1111/j.1471-4159.1993.tb13632.x. [DOI] [PubMed] [Google Scholar]
  26. Suszkiw J. B., Pilar G. Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals. J Neurochem. 1976 Jun;26(6):1133–1138. doi: 10.1111/j.1471-4159.1976.tb06996.x. [DOI] [PubMed] [Google Scholar]
  27. Uberall F., Oberhuber H., Maly K., Zaknun J., Demuth L., Grunicke H. H. Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res. 1991 Feb 1;51(3):807–812. [PubMed] [Google Scholar]
  28. Vance D. E., Pelech S. D., Choy P. C. CTP: phosphocholine cytidylyltransferase from rat liver. Methods Enzymol. 1981;71(Pt 100):576–581. doi: 10.1016/0076-6879(81)71070-x. [DOI] [PubMed] [Google Scholar]
  29. Vance J. E., Pan D., Campenot R. B., Bussière M., Vance D. E. Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J Neurochem. 1994 Jan;62(1):329–337. doi: 10.1046/j.1471-4159.1994.62010329.x. [DOI] [PubMed] [Google Scholar]
  30. Vance J. E., Pan D., Vance D. E., Campenot R. B. Biosynthesis of membrane lipids in rat axons. J Cell Biol. 1991 Nov;115(4):1061–1068. doi: 10.1083/jcb.115.4.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zheng B., Oishi K., Shoji M., Eibl H., Berdel W. E., Hajdu J., Vogler W. R., Kuo J. F. Inhibition of protein kinase C, (sodium plus potassium)-activated adenosine triphosphatase, and sodium pump by synthetic phospholipid analogues. Cancer Res. 1990 May 15;50(10):3025–3031. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES