Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Feb 1;305(Pt 3):897–904. doi: 10.1042/bj3050897

Measurement of the absolute number of functioning low-density lipoprotein receptors in vivo using a monoclonal antibody.

C Fitzsimmons 1, R Bush 1, D Hele 1, C Godliman 1, E Gherardi 1, D E Bowyer 1
PMCID: PMC1136343  PMID: 7848291

Abstract

MAC188 S/S is a monoclonal antibody which can be used in vivo to measure the absolute number of functioning low-density lipoprotein (LDL) receptors in a rabbit. The antibody binds to the extra-cellular domain of the LDL receptor and binding is not blocked by the presence of LDL. When the antibody-receptor complex is internalized, receptor recycling is inhibited for several hours. Thus when saturating doses of MAC188 S/S are administered intravenously, the amount of antibody removed from the blood (minus non-specific removal) is determined solely by the total number of LDL receptors in an animal. In this study MAC188 S/S was used to measure the number of LDL receptors in control rabbits and in animals treated with 17 alpha-ethinyl oestradiol. After treatment (which caused a 47% decrease in plasma cholesterol), receptor-mediated removal of MAC188 S/S from the blood was saturated in both groups following injection of 3.0 mg of antibody per kg body weight. Based on the amount of antibody removed via the LDL receptor at this dose, the total number of accessible LDL receptors was calculated as (2.0 +/- 0.3) x 10(15) receptors per kg body weight in control rabbits and (4.0 +/- 0.4) x 10(15) receptors per kg body weight in oestrogen-treated animals. The number of receptors in various organs was also determined. The monoclonal antibody approach therefore, allows accurate determination of LDL receptor numbers in animals with markedly different concentrations of circulating LDL, conditions in which the use of endogenous ligand would be subject to significant errors.

Full text

PDF
897

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arad Y., Ramakrishnan R., Ginsberg H. N. Lovastatin therapy reduces low density lipoprotein apoB levels in subjects with combined hyperlipidemia by reducing the production of apoB-containing lipoproteins: implications for the pathophysiology of apoB production. J Lipid Res. 1990 Apr;31(4):567–582. [PubMed] [Google Scholar]
  2. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  3. Brown M. S., Goldstein J. L. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov;6(3):307–316. doi: 10.1016/0092-8674(75)90182-8. [DOI] [PubMed] [Google Scholar]
  4. Dietschy J. M., Turley S. D., Spady D. K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res. 1993 Oct;34(10):1637–1659. [PubMed] [Google Scholar]
  5. Gherardi E., Bowyer D. E., Fitzsimmons C., Le Cras T., Hutchings A., Butcher G. Probing of the expression of the low-density lipoprotein receptor in vivo using an anti-receptor monoclonal antibody. Biochem J. 1991 Nov 15;280(Pt 1):1–7. doi: 10.1042/bj2800001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gherardi E., Brugni N., Bowyer D. E. Purification of low density lipoprotein receptor from liver and its quantification by anti-receptor monoclonal antibodies. Biochem J. 1988 Jul 15;253(2):409–415. doi: 10.1042/bj2530409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldstein J. L., Basu S. K., Brunschede G. Y., Brown M. S. Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85–95. doi: 10.1016/0092-8674(76)90258-0. [DOI] [PubMed] [Google Scholar]
  8. Grundy S. M., Denke M. A. Dietary influences on serum lipids and lipoproteins. J Lipid Res. 1990 Jul;31(7):1149–1172. [PubMed] [Google Scholar]
  9. Herz J., Kowal R. C., Ho Y. K., Brown M. S., Goldstein J. L. Low density lipoprotein receptor-related protein mediates endocytosis of monoclonal antibodies in cultured cells and rabbit liver. J Biol Chem. 1990 Dec 5;265(34):21355–21362. [PubMed] [Google Scholar]
  10. Houlston R. S., Turner P. R., Revill J., Lewis B., Humphries S. E. The fractional catabolic rate of low density lipoprotein in normal individuals is influenced by variation in the apolipoprotein B gene: a preliminary study. Atherosclerosis. 1988 May;71(1):81–85. doi: 10.1016/0021-9150(88)90305-x. [DOI] [PubMed] [Google Scholar]
  11. Huettinger M., Schneider W. J., Ho Y. K., Goldstein J. L., Brown M. S. Use of monoclonal anti-receptor antibodies to probe the expression of the low density lipoprotein receptor in tissues of normal and Watanabe heritable hyperlipidemic rabbits. J Clin Invest. 1984 Sep;74(3):1017–1026. doi: 10.1172/JCI111469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klauda H. C., Zilversmit D. B. Cholesterol catabolism in the rabbit in fasted and fed states. J Lipid Res. 1975 Jul;16(4):258–263. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lindsey S., Pronczuk A., Hayes K. C. Low density lipoprotein from humans supplemented with n-3 fatty acids depresses both LDL receptor activity and LDLr mRNA abundance in HepG2 cells. J Lipid Res. 1992 May;33(5):647–658. [PubMed] [Google Scholar]
  16. Ma P. T., Yamamoto T., Goldstein J. L., Brown M. S. Increased mRNA for low density lipoprotein receptor in livers of rabbits treated with 17 alpha-ethinyl estradiol. Proc Natl Acad Sci U S A. 1986 Feb;83(3):792–796. doi: 10.1073/pnas.83.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meddings J. B., Dietschy J. M. Regulation of plasma levels of low-density lipoprotein cholesterol: interpretation of data on low-density lipoprotein turnover in man. Circulation. 1986 Oct;74(4):805–814. doi: 10.1161/01.cir.74.4.805. [DOI] [PubMed] [Google Scholar]
  19. Pannell R., Milstein C. An oscillating bubble chamber for laboratory scale production of monoclonal antibodies as an alternative to ascitic tumours. J Immunol Methods. 1992 Jan 21;146(1):43–48. doi: 10.1016/0022-1759(92)90046-v. [DOI] [PubMed] [Google Scholar]
  20. Spady D. K., Huettinger M., Bilheimer D. W., Dietschy J. M. Role of receptor-independent low density lipoprotein transport in the maintenance of tissue cholesterol balance in the normal and WHHL rabbit. J Lipid Res. 1987 Jan;28(1):32–41. [PubMed] [Google Scholar]
  21. Spady D. K., Meddings J. B., Dietschy J. M. Kinetic constants for receptor-dependent and receptor-independent low density lipoprotein transport in the tissues of the rat and hamster. J Clin Invest. 1986 May;77(5):1474–1481. doi: 10.1172/JCI112460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swinkels D. W., Hendriks J. C., Demacker P. N., Stalenhoef A. F. Differences in metabolism of three low density lipoprotein subfractions in Hep G2 cells. Biochim Biophys Acta. 1990 Dec 4;1047(3):212–222. doi: 10.1016/0005-2760(90)90519-4. [DOI] [PubMed] [Google Scholar]
  23. Takahashi S., Kawarabayasi Y., Nakai T., Sakai J., Yamamoto T. Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9252–9256. doi: 10.1073/pnas.89.19.9252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Witztum J. L., Young S. G., Elam R. L., Carew T. E., Fisher M. Cholestyramine-induced changes in low density lipoprotein composition and metabolism. I. Studies in the guinea pig. J Lipid Res. 1985 Jan;26(1):92–103. [PubMed] [Google Scholar]
  26. Yamada N., Shames D. M., Stoudemire J. B., Havel R. J. Metabolism of lipoproteins containing apolipoprotein B-100 in blood plasma of rabbits: heterogeneity related to the presence of apolipoprotein E. Proc Natl Acad Sci U S A. 1986 May;83(10):3479–3483. doi: 10.1073/pnas.83.10.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES