Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Feb 1;305(Pt 3):981–986. doi: 10.1042/bj3050981

A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor.

C Kristensen 1, A S Andersen 1, M Hach 1, F C Wiberg 1, L Schäffer 1, T Kjeldsen 1
PMCID: PMC1136354  PMID: 7848300

Abstract

1. To investigate the structure/function relationship of the interaction between ligand and receptor in the insulin-like growth factor I (IGF-I) and insulin receptor systems we have prepared and characterized a single-chain insulin/IGF-I hybrid. The single-chain hybrid consists of the insulin molecule combined with the C domain of IGF-I. The single-chain hybrid was found to bind with high affinity to both truncated soluble insulin receptors and membrane-bound holoreceptors. The affinity for interacting with the soluble truncated insulin receptors was 55-94% relative to insulin, and affinity for membrane-bound insulin receptors was 113% of that of insulin. Furthermore we found that the affinity of the single-chain hybrid molecule for IGF-I receptors was 19-28% relative to IGF-I. 2. The affinity of the single-chain hybrid for chimeric insulin/IGF-I receptors exceeded that of either natural ligand. This indicates that coordinately changing domains of the receptors and the ligands can induce higher affinity of ligand for receptor, supporting the idea that these receptors have a common ligand-binding site [Kjeldsen, Andersen, Wiberg, Rasmussen, Schäffer, Balschmidt, Møller and Møller (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 4404-4408]. 3. In contrast with what was generally assumed about the ligand structure required for binding to the insulin receptor we demonstrate the first single-chain insulin analogue that can bind with high affinity to the insulin receptor.

Full text

PDF
981

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. S., Kjeldsen T., Wiberg F. C., Christensen P. M., Rasmussen J. S., Norris K., Møller K. B., Møller N. P. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity. Biochemistry. 1990 Aug 14;29(32):7363–7366. doi: 10.1021/bi00484a002. [DOI] [PubMed] [Google Scholar]
  2. Andersen A. S., Kjeldsen T., Wiberg F. C., Vissing H., Schäffer L., Rasmussen J. S., De Meyts P., Møller N. P. Identification of determinants that confer ligand specificity on the insulin receptor. J Biol Chem. 1992 Jul 5;267(19):13681–13686. [PubMed] [Google Scholar]
  3. Bayne M. L., Applebaum J., Underwood D., Chicchi G. G., Green B. G., Hayes N. S., Cascieri M. A. The C region of human insulin-like growth factor (IGF) I is required for high affinity binding to the type 1 IGF receptor. J Biol Chem. 1989 Jul 5;264(19):11004–11008. [PubMed] [Google Scholar]
  4. Cara J. F., Mirmira R. G., Nakagawa S. H., Tager H. S. An insulin-like growth factor I/insulin hybrid exhibiting high potency for interaction with the type I insulin-like growth factor and insulin receptors of placental plasma membranes. J Biol Chem. 1990 Oct 15;265(29):17820–17825. [PubMed] [Google Scholar]
  5. Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Bing X., Markussen J. X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue. J Mol Biol. 1991 Jul 20;220(2):425–433. doi: 10.1016/0022-2836(91)90022-x. [DOI] [PubMed] [Google Scholar]
  6. Drejer K., Kruse V., Larsen U. D., Hougaard P., Bjørn S., Gammeltoft S. Receptor binding and tyrosine kinase activation by insulin analogues with extreme affinities studied in human hepatoma HepG2 cells. Diabetes. 1991 Nov;40(11):1488–1495. doi: 10.2337/diab.40.11.1488. [DOI] [PubMed] [Google Scholar]
  7. Gliemann J., Gammeltoft S. The biological activity and the binding affinity of modified insulins determined on isolated rat fat cells. Diabetologia. 1974 Apr;10(2):105–113. doi: 10.1007/BF01219665. [DOI] [PubMed] [Google Scholar]
  8. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  9. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
  10. Kjeldsen T., Andersen A. S., Wiberg F. C., Rasmussen J. S., Schäffer L., Balschmidt P., Møller K. B., Møller N. P. The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4404–4408. doi: 10.1073/pnas.88.10.4404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Markussen J., Halstrøm J., Wiberg F. C., Schäffer L. Immobilized insulin for high capacity affinity chromatography of insulin receptors. J Biol Chem. 1991 Oct 5;266(28):18814–18818. [PubMed] [Google Scholar]
  12. Markussen J., Jørgensen K. H., Sørensen A. R., Thim L. Single chain des-(B30) insulin. Intramolecular crosslinking of insulin by trypsin catalyzed transpeptidation. Int J Pept Protein Res. 1985 Jul;26(1):70–77. [PubMed] [Google Scholar]
  13. Nakagawa S. H., Tager H. S. Importance of main-chain flexibility and the insulin fold in insulin-receptor interactions. Biochemistry. 1993 Jul 20;32(28):7237–7243. doi: 10.1021/bi00079a021. [DOI] [PubMed] [Google Scholar]
  14. Nakagawa S. H., Tager H. S. Perturbation of insulin-receptor interactions by intramolecular hormone cross-linking. Analysis of relative movement among residues A1, B1, and B29. J Biol Chem. 1989 Jan 5;264(1):272–279. [PubMed] [Google Scholar]
  15. Nakagawa S. H., Tager H. S. Role of the COOH-terminal B-chain domain in insulin-receptor interactions. Identification of perturbations involving the insulin mainchain. J Biol Chem. 1987 Sep 5;262(25):12054–12058. [PubMed] [Google Scholar]
  16. Peavy D. E., Brunner M. R., Duckworth W. C., Hooker C. S., Frank B. H. Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin. Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats. J Biol Chem. 1985 Nov 15;260(26):13989–13994. [PubMed] [Google Scholar]
  17. Rinderknecht E., Humbel R. E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978 Apr 25;253(8):2769–2776. [PubMed] [Google Scholar]
  18. Sato A., Nishimura S., Ohkubo T., Kyogoku Y., Koyama S., Kobayashi M., Yasuda T., Kobayashi Y. Three-dimensional structure of human insulin-like growth factor-I (IGF-I) determined by 1H-NMR and distance geometry. Int J Pept Protein Res. 1993 May;41(5):433–440. doi: 10.1111/j.1399-3011.1993.tb00462.x. [DOI] [PubMed] [Google Scholar]
  19. Schäffer L., Kjeldsen T., Andersen A. S., Wiberg F. C., Larsen U. D., Cara J. F., Mirmira R. G., Nakagawa S. H., Tager H. S. Interactions of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors. J Biol Chem. 1993 Feb 15;268(5):3044–3047. [PubMed] [Google Scholar]
  20. Schäffer L., Larsen U. D., Linde S., Hejnaes K. R., Skriver L. Characterization of the three 125I-iodination isomers of human insulin-like growth factor I (IGF1). Biochim Biophys Acta. 1993 Dec 8;1203(2):205–209. doi: 10.1016/0167-4838(93)90084-5. [DOI] [PubMed] [Google Scholar]
  21. Thim L., Hansen M. T., Norris K., Hoegh I., Boel E., Forstrom J., Ammerer G., Fiil N. P. Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6766–6770. doi: 10.1073/pnas.83.18.6766. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES