Abstract
African trypanosomes contain cysteine proteases (trypanopains) the activity of which can be measured by in vitro digestion of fibrinogen, after electrophoresis in fibrinogen-containing SDS/polyacrylamide gels. When assessed by this procedure, trypanopain from Trypanosoma brucei (trypanopain-Tb) is estimated to have a molecular mass of 28 kDa. However, two additional bands of trypanopain activity (87 kDa and 105 kDa) are observed if serum is added to the trypanopain before electrophoresis. Formation of the 87 and 105 kDa bands is frequently accompanied by a reduction in the intensity of the 28 kDa activity which suggests that the extra bands are complexes of the 28 kDa trypanopain-Tb and a molecule from rat serum called rat trypanopain moledulator (rTM). The rTM-induced activation of cysteine proteases is not restricted to T. brucei as it is also observed with proteases from other protozoan parasites such as bloodstream forms of Trypanosoma congolense and the mammalian-infective in vitro-derived promastigote forms of Leishmania donovani and Leishmania major. The physical properties of rTM resemble those of the kininogen family of cysteine protease inhibitors. rTM is an acidic (pI 4.7) heat-stable 68 kDa glycoprotein with 15 kDa protease-susceptible domains. This resemblance between rTM and kininogens was confirmed by the positive, albeit weak, immunoreactivity between anti-(human low-molecular-mass kininogen) antibody and rTM as well as anti-rTM antibody and human low-molecular-mass kininogen. Furthermore, commercial preparations of human-low-molecular-mass kininogen and chicken egg white cystatin mimicked rTM by forming extra bands of proteolytic activity in the presence of trypanopain-Tb. In some instances, low-molecular-mass kininogen was also observed to increase the rate of hydrolysis of 7-(benzyloxycarbonyl-phenylalanyl-arginyl-amido)-4- methylcoumarin by live T. brucei. Although this effect was rather erratic, in no instance was significant inhibition observed when this putative cysteine protease inhibitor was used under these conditions. The activation of parasite cysteine proteases by commonly accepted cysteine protease inhibitors is unexpected and may have important pathological repercussions.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashall F., Angliker H., Shaw E. Lysis of trypanosomes by peptidyl fluoromethyl ketones. Biochem Biophys Res Commun. 1990 Jul 31;170(2):923–929. doi: 10.1016/0006-291x(90)92179-4. [DOI] [PubMed] [Google Scholar]
- Authié E., Muteti D. K., Mbawa Z. R., Lonsdale-Eccles J. D., Webster P., Wells C. W. Identification of a 33-kilodalton immunodominant antigen of Trypanosoma congolense as a cysteine protease. Mol Biochem Parasitol. 1992 Nov;56(1):103–116. doi: 10.1016/0166-6851(92)90158-g. [DOI] [PubMed] [Google Scholar]
- Avila E. E., Calderon J. Entamoeba histolytica trophozoites: a surface-associated cysteine protease. Exp Parasitol. 1993 May;76(3):232–241. doi: 10.1006/expr.1993.1028. [DOI] [PubMed] [Google Scholar]
- Bontempi E., Martinez J., Cazzulo J. J. Subcellular localization of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol. 1989 Feb;33(1):43–47. doi: 10.1016/0166-6851(89)90040-6. [DOI] [PubMed] [Google Scholar]
- Cazzulo J. J., Couso R., Raimondi A., Wernstedt C., Hellman U. Further characterization and partial amino acid sequence of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol. 1989 Feb;33(1):33–41. doi: 10.1016/0166-6851(89)90039-x. [DOI] [PubMed] [Google Scholar]
- Chaudhuri G., Chaudhuri M., Pan A., Chang K. P. Surface acid proteinase (gp63) of Leishmania mexicana. A metalloenzyme capable of protecting liposome-encapsulated proteins from phagolysosomal degradation by macrophages. J Biol Chem. 1989 May 5;264(13):7483–7489. [PubMed] [Google Scholar]
- Childs G. E., Foster K. A., McRoberts M. J. Insect cell culture media for cultivation of new world Leishmania. Int J Parasitol. 1978 Aug;8(4):255–258. doi: 10.1016/0020-7519(78)90088-7. [DOI] [PubMed] [Google Scholar]
- Dahlmann B., Rutschmann M., Kuehn L., Reinauer H. Activation of the multicatalytic proteinase from rat skeletal muscle by fatty acids or sodium dodecyl sulphate. Biochem J. 1985 May 15;228(1):171–177. doi: 10.1042/bj2280171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeMartino G. N., Blumenthal D. K. Identification and partial purification of a factor that stimulates calcium-dependent proteases. Biochemistry. 1982 Aug 31;21(18):4297–4303. doi: 10.1021/bi00261a019. [DOI] [PubMed] [Google Scholar]
- DeMartino G. N., Goldberg A. L. Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J Biol Chem. 1979 May 25;254(10):3712–3715. [PubMed] [Google Scholar]
- Dennison C., Pike R., Coetzer T., Kirk K. Characterisation of the activity and stability of single-chain cathepsin L and of proteolytically active cathepsin L/cystatin complexes. Biol Chem Hoppe Seyler. 1992 Jul;373(7):419–425. doi: 10.1515/bchm3.1992.373.2.419. [DOI] [PubMed] [Google Scholar]
- Enjyoji K., Kato H., Hayashi I., Oh-ishi S., Iwanaga S. Purification and characterization of rat T-kininogens isolated from plasma of adjuvant-treated rats. Identification of three kinds of T-kininogens. J Biol Chem. 1988 Jan 15;263(2):973–979. [PubMed] [Google Scholar]
- Esnard F., Gauthier F. Rat alpha 1-cysteine proteinase inhibitor. An acute phase reactant identical with alpha 1 acute phase globulin. J Biol Chem. 1983 Oct 25;258(20):12443–12447. [PubMed] [Google Scholar]
- Etges R., Bouvier J., Bordier C. The major surface protein of Leishmania promastigotes is a protease. J Biol Chem. 1986 Jul 15;261(20):9098–9101. [PubMed] [Google Scholar]
- Fish W. R., Muriuki C. W., Muthiani A. M., Grab D. J., Lonsdale-Eccles J. D. Disulfide bond involvement in the maintenance of the cryptic nature of the cross-reacting determinant of metacyclic forms of Trypanosoma congolense. Biochemistry. 1989 Jun 27;28(13):5415–5421. doi: 10.1021/bi00439a015. [DOI] [PubMed] [Google Scholar]
- Grab D. J., Bwayo J. J. Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Trop. 1982 Dec;39(4):363–366. [PubMed] [Google Scholar]
- Grab D. J., Webster P., Ito S., Fish W. R., Verjee Y., Lonsdale-Eccles J. D. Subcellular localization of a variable surface glycoprotein phosphatidylinositol-specific phospholipase-C in African trypanosomes. J Cell Biol. 1987 Aug;105(2):737–746. doi: 10.1083/jcb.105.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green G. D., Kembhavi A. A., Davies M. E., Barrett A. J. Cystatin-like cysteine proteinase inhibitors from human liver. Biochem J. 1984 Mar 15;218(3):939–946. doi: 10.1042/bj2180939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
- Hendricks L. D., Wood D. E., Hajduk M. E. Haemoflagellates: commercially available liquid media for rapid cultivation. Parasitology. 1978 Jun;76(3):309–316. doi: 10.1017/s0031182000048186. [DOI] [PubMed] [Google Scholar]
- Ip H. S., Orn A., Russell D. G., Cross G. A. Leishmania mexicana mexicana gp63 is a site-specific neutral endopeptidase. Mol Biochem Parasitol. 1990 May;40(2):163–172. doi: 10.1016/0166-6851(90)90038-n. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Langreth S. G., Balber A. E. Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. J Protozool. 1975 Feb;22(1):40–53. doi: 10.1111/j.1550-7408.1975.tb00943.x. [DOI] [PubMed] [Google Scholar]
- Lanham S. M., Godfrey D. G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol. 1970 Dec;28(3):521–534. doi: 10.1016/0014-4894(70)90120-7. [DOI] [PubMed] [Google Scholar]
- Lonsdale-Eccles J. D., Grab D. J. Lysosomal and non-lysosomal peptidyl hydrolases of the bloodstream forms of Trypanosoma brucei brucei. Eur J Biochem. 1987 Dec 15;169(3):467–475. doi: 10.1111/j.1432-1033.1987.tb13634.x. [DOI] [PubMed] [Google Scholar]
- Lonsdale-Eccles J. D., Grab D. J. Purification of African trypanosomes can cause biochemical changes in the parasites. J Protozool. 1987 Nov;34(4):405–408. doi: 10.1111/j.1550-7408.1987.tb03201.x. [DOI] [PubMed] [Google Scholar]
- Lonsdale-Eccles J. D., Mpimbaza G. W. Thiol-dependent proteases of African trypanosomes. Analysis by electrophoresis in sodium dodecyl sulphate/polyacrylamide gels co-polymerized with fibrinogen. Eur J Biochem. 1986 Mar 17;155(3):469–473. doi: 10.1111/j.1432-1033.1986.tb09513.x. [DOI] [PubMed] [Google Scholar]
- Lonsdale-Eccles J. D., Neurath H., Walsh K. A. Probes of the mechanism of zymogen catalysis. Biochemistry. 1978 Jul 11;17(14):2805–2809. doi: 10.1021/bi00607a016. [DOI] [PubMed] [Google Scholar]
- Lonsdale-Eccles J. D. Sulphydryl-dependent enzymes from African trypanosomes. Prog Clin Biol Res. 1985;180:229–231. [PubMed] [Google Scholar]
- Mbawa Z. R., Gumm I. D., Fish W. R., Lonsdale-Eccles J. D. Endopeptidase variations among different life-cycle stages of African trypanosomes. Eur J Biochem. 1991 Jan 1;195(1):183–190. doi: 10.1111/j.1432-1033.1991.tb15693.x. [DOI] [PubMed] [Google Scholar]
- Mbawa Z. R., Gumm I. D., Shaw E., Lonsdale-Eccles J. D. Characterisation of a cysteine protease from bloodstream forms of Trypanosoma congolense. Eur J Biochem. 1992 Feb 15;204(1):371–379. doi: 10.1111/j.1432-1033.1992.tb16646.x. [DOI] [PubMed] [Google Scholar]
- Mbawa Z. R., Webster P., Lonsdale-Eccles J. D. Immunolocalization of a cysteine protease within the lysosomal system of Trypanosoma congolense. Eur J Cell Biol. 1991 Dec;56(2):243–250. [PubMed] [Google Scholar]
- Mottram J. C., North M. J., Barry J. D., Coombs G. H. A cysteine proteinase cDNA from Trypanosoma brucei predicts an enzyme with an unusual C-terminal extension. FEBS Lett. 1989 Dec 4;258(2):211–215. doi: 10.1016/0014-5793(89)81655-2. [DOI] [PubMed] [Google Scholar]
- Müller-Esterl W., Fritz H., Machleidt W., Ritonja A., Brzin J., Kotnik M., Turk V., Kellermann J., Lottspeich F. Human plasma kininogens are identical with alpha-cysteine proteinase inhibitors. Evidence from immunological, enzymological and sequence data. FEBS Lett. 1985 Mar 25;182(2):310–314. doi: 10.1016/0014-5793(85)80322-7. [DOI] [PubMed] [Google Scholar]
- North M. J., Coombs G. H., Barry J. D. A comparative study of the proteolytic enzymes of Trypanosoma brucei, T. equiperdum, T. evansi, T. vivax, Leishmania tarentolae and Crithidia fasciculata. Mol Biochem Parasitol. 1983 Oct;9(2):161–180. doi: 10.1016/0166-6851(83)90107-x. [DOI] [PubMed] [Google Scholar]
- Nwagwu M., Okenu D. M., Olusi T. A., Molokwu R. I. Trypanosoma brucei releases proteases extracellularly. Trans R Soc Trop Med Hyg. 1988;82(4):577–577. doi: 10.1016/0035-9203(88)90515-9. [DOI] [PubMed] [Google Scholar]
- Ohkubo I., Kurachi K., Takasawa T., Shiokawa H., Sasaki M. Isolation of a human cDNA for alpha 2-thiol proteinase inhibitor and its identity with low molecular weight kininogen. Biochemistry. 1984 Nov 20;23(24):5691–5697. doi: 10.1021/bi00319a005. [DOI] [PubMed] [Google Scholar]
- Pamer E. G., Davis C. E., Eakin A., So M. Cloning and sequencing of the cysteine protease cDNA from Trypanosoma brucei rhodesiense. Nucleic Acids Res. 1990 Oct 25;18(20):6141–6141. doi: 10.1093/nar/18.20.6141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pamer E. G., So M., Davis C. E. Identification of a developmentally regulated cysteine protease of Trypanosoma brucei. Mol Biochem Parasitol. 1989 Feb;33(1):27–32. doi: 10.1016/0166-6851(89)90038-8. [DOI] [PubMed] [Google Scholar]
- Pike R. N., Coetzer T. H., Dennison C. Proteolytically active complexes of cathepsin L and a cysteine proteinase inhibitor; purification and demonstration of their formation in vitro. Arch Biochem Biophys. 1992 May 1;294(2):623–629. doi: 10.1016/0003-9861(92)90734-e. [DOI] [PubMed] [Google Scholar]
- Rautenberg P., Schädler R., Reinwald E., Risse H. J. Study on a proteolytic enzyme from Trypanosoma congolense. Purification and some biochemical properties. Mol Cell Biochem. 1982 Sep 17;47(3):151–159. doi: 10.1007/BF00229598. [DOI] [PubMed] [Google Scholar]
- Robertson C. D., Coombs G. H. Characterisation of three groups of cysteine proteinases in the amastigotes of Leishmania mexicana mexicana. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):269–276. doi: 10.1016/0166-6851(90)90170-q. [DOI] [PubMed] [Google Scholar]
- Rockett K. A., Playfair J. H., Ashall F., Targett G. A., Angliker H., Shaw E. Inhibition of intraerythrocytic development of Plasmodium falciparum by proteinase inhibitors. FEBS Lett. 1990 Jan 1;259(2):257–259. doi: 10.1016/0014-5793(90)80022-b. [DOI] [PubMed] [Google Scholar]
- Rosenthal P. J., McKerrow J. H., Rasnick D., Leech J. H. Plasmodium falciparum: inhibitors of lysosomal cysteine proteinases inhibit a trophozoite proteinase and block parasite development. Mol Biochem Parasitol. 1989 Jun 15;35(2):177–183. doi: 10.1016/0166-6851(89)90120-5. [DOI] [PubMed] [Google Scholar]
- Rusiniak M. E., Bedi G. S., Back N. Role of carbohydrate in rat plasma thiostatin: deglycosylation destroys cysteine proteinase inhibition activity. Biochem Biophys Res Commun. 1991 Sep 16;179(2):927–932. doi: 10.1016/0006-291x(91)91907-t. [DOI] [PubMed] [Google Scholar]
- Russo D. C., Grab D. J., Lonsdale-Eccles J. D., Shaw M. K., Williams D. J. Directional movement of variable surface glycoprotein-antibody complexes in Trypanosoma brucei. Eur J Cell Biol. 1993 Dec;62(2):432–441. [PubMed] [Google Scholar]
- Salvesen G., Parkes C., Abrahamson M., Grubb A., Barrett A. J. Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem J. 1986 Mar 1;234(2):429–434. doi: 10.1042/bj2340429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi K. The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem. 1968 Dec 10;243(23):6171–6179. [PubMed] [Google Scholar]
- Vogel R., Assfalg-Machleidt I., Esterl A., Machleidt W., Müller-Esterl W. Proteinase-sensitive regions in the heavy chain of low molecular weight kininogen map to the inter-domain junctions. J Biol Chem. 1988 Sep 5;263(25):12661–12668. [PubMed] [Google Scholar]
- Webster P. Endocytosis by African trypanosomes. I. Three-dimensional structure of the endocytic organelles in Trypanosoma brucei and T. congolense. Eur J Cell Biol. 1989 Aug;49(2):295–302. [PubMed] [Google Scholar]
- Webster P., Grab D. J. Intracellular colocalization of variant surface glycoprotein and transferrin-gold in Trypanosoma brucei. J Cell Biol. 1988 Feb;106(2):279–288. doi: 10.1083/jcb.106.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]







