Abstract
The extracellular portion of the insulin receptor (IR) beta-subunit has four cysteine and four asparagine residues which are potentially involved in disulphide bond formation between the alpha- and beta-subunits and N-linked glycosylation respectively. However, the function of this portion is not fully understood. In order to investigate the role of the extracellular domain of beta-subunit, we created a deletion mutant of IR cDNA which lacked 47 amino acid residues encoded by 141 bp corresponding to exon 13 of the IR gene. Insulin binding and surface labelling of COS 7 cells transiently expressing the mutant insulin receptors (IR delta Ex13) showed that the mutated receptors were not expressed on the cell surface. However, immunoblot analysis showed that uncleaved form (190 kDa) of the mutant receptors were intracellularly expressed. Deglycosylation with endoglycosidase H showed that the mutant receptors had mainly high-mannose oligosaccharide chains. The mutant IRs bound with high affinity to lentil lectin but with low affinity to wheat germ agglutinin. Therefore, it is suggested that misfolding of the mutant receptors inhibits transport to the Golgi apparatus where processing of oligosaccharide chains, as well as proteolytic cleavage into subunits, takes place. The binding affinity of the mutant receptors for insulin was 50% of normal. Furthermore, insulin-stimulated autophosphorylation of IR delta Ex13 was markedly impaired. These data provide the evidence for a critical role of the extracellular domain of IR beta-subunit for processing and transport as well as the intramolecular signal transduction to activate IR tyrosine kinase.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Accili D., Kadowaki T., Kadowaki H., Mosthaf L., Ullrich A., Taylor S. I. Immunoglobulin heavy chain-binding protein binds to misfolded mutant insulin receptors with mutations in the extracellular domain. J Biol Chem. 1992 Jan 5;267(1):586–590. [PubMed] [Google Scholar]
- Arakaki R. F., Comi R. J., Gorden P. Evidence for exogenous substrate phosphorylation and dimer formation by the activated 190 kDa insulin proreceptor in vitro. Biochem Biophys Res Commun. 1989 Apr 14;160(1):296–302. doi: 10.1016/0006-291x(89)91655-0. [DOI] [PubMed] [Google Scholar]
- Caro L. H., Ohali A., Gorden P., Collier E. Mutational analysis of the NH2-terminal glycosylation sites of the insulin receptor alpha-subunit. Diabetes. 1994 Feb;43(2):240–246. doi: 10.2337/diab.43.2.240. [DOI] [PubMed] [Google Scholar]
- Collier E., Carpentier J. L., Beitz L., Carol H., Taylor S. I., Gorden P. Specific glycosylation site mutations of the insulin receptor alpha subunit impair intracellular transport. Biochemistry. 1993 Aug 3;32(30):7818–7823. doi: 10.1021/bi00081a029. [DOI] [PubMed] [Google Scholar]
- Duronio V., Jacobs S., Romero P. A., Herscovics A. Effects of inhibitors of N-linked oligosaccharide processing on the biosynthesis and function of insulin and insulin-like growth factor-I receptors. J Biol Chem. 1988 Apr 15;263(11):5436–5445. [PubMed] [Google Scholar]
- Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masiarz F., Kan Y. W., Goldfine I. D. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. doi: 10.1016/0092-8674(85)90334-4. [DOI] [PubMed] [Google Scholar]
- Gherzi R., Sesti G., Andraghetti G., De Pirro R., Lauro R., Adezati L., Cordera R. An extracellular domain of the insulin receptor beta-subunit with regulatory function on protein-tyrosine kinase. J Biol Chem. 1989 May 25;264(15):8627–8635. [PubMed] [Google Scholar]
- Haruta T., Takata Y., Iwanishi M., Maegawa H., Imamura T., Egawa K., Itazu T., Kobayashi M. Ala1048-->Asp mutation in the kinase domain of insulin receptor causes defective kinase activity and insulin resistance. Diabetes. 1993 Dec;42(12):1837–1844. doi: 10.2337/diab.42.12.1837. [DOI] [PubMed] [Google Scholar]
- Hedo J. A., Harrison L. C., Roth J. Binding of insulin receptors to lectins: evidence for common carbohydrate determinants on several membrane receptors. Biochemistry. 1981 Jun 9;20(12):3385–3393. doi: 10.1021/bi00515a013. [DOI] [PubMed] [Google Scholar]
- Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadowaki T., Kadowaki H., Accili D., Taylor S. I. Substitution of lysine for asparagine at position 15 in the alpha-subunit of the human insulin receptor. A mutation that impairs transport of receptors to the cell surface and decreases the affinity of insulin binding. J Biol Chem. 1990 Nov 5;265(31):19143–19150. [PubMed] [Google Scholar]
- Kadowaki T., Kadowaki H., Accili D., Yazaki Y., Taylor S. I. Substitution of arginine for histidine at position 209 in the alpha-subunit of the human insulin receptor. A mutation that impairs receptor dimerization and transport of receptors to the cell surface. J Biol Chem. 1991 Nov 5;266(31):21224–21231. [PubMed] [Google Scholar]
- Kahn C. R., White M. F. The insulin receptor and the molecular mechanism of insulin action. J Clin Invest. 1988 Oct;82(4):1151–1156. doi: 10.1172/JCI113711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi M., Sasaoka T., Takata Y., Hisatomi A., Shigeta Y. Insulin resistance by uncleaved insulin proreceptor. Emergence of binding site by trypsin. Diabetes. 1988 May;37(5):653–656. doi: 10.2337/diab.37.5.653. [DOI] [PubMed] [Google Scholar]
- Kobayashi M., Sasaoka T., Takata Y., Ishibashi O., Sugibayashi M., Shigeta Y., Hisatomi A., Nakamura E., Tamaki M., Teraoka H. Insulin resistance by unprocessed insulin proreceptors point mutation at the cleavage site. Biochem Biophys Res Commun. 1988 Jun 16;153(2):657–663. doi: 10.1016/s0006-291x(88)81145-8. [DOI] [PubMed] [Google Scholar]
- Kobayashi M., Sugibayashi M., Sasaoka T., Egawa K., Shigeta Y., Tamaki M., Nakamura E., Teraoka H. Transfection of cDNA with G----T point mutation at the cleavage site of insulin receptors to COS 7 cells. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1073–1078. doi: 10.1016/0006-291x(90)90632-w. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leconte I., Auzan C., Debant A., Rossi B., Clauser E. N-linked oligosaccharide chains of the insulin receptor beta subunit are essential for transmembrane signaling. J Biol Chem. 1992 Aug 25;267(24):17415–17423. [PubMed] [Google Scholar]
- Maassen J. A., Van der Vorm E. R., Van der Zon G. C., Klinkhamer M. P., Krans H. M., Möller W. A leucine to proline mutation at position 233 in the insulin receptor inhibits cleavage of the proreceptor and transport to the cell surface. Biochemistry. 1991 Nov 5;30(44):10778–10783. doi: 10.1021/bi00108a024. [DOI] [PubMed] [Google Scholar]
- Marshall S. Kinetics of insulin receptor internalization and recycling in adipocytes. Shunting of receptors to a degradative pathway by inhibitors of recycling. J Biol Chem. 1985 Apr 10;260(7):4136–4144. [PubMed] [Google Scholar]
- McClain D. A., Maegawa H., Lee J., Dull T. J., Ulrich A., Olefsky J. M. A mutant insulin receptor with defective tyrosine kinase displays no biologic activity and does not undergo endocytosis. J Biol Chem. 1987 Oct 25;262(30):14663–14671. [PubMed] [Google Scholar]
- Olson T. S., Bamberger M. J., Lane M. D. Post-translational changes in tertiary and quaternary structure of the insulin proreceptor. Correlation with acquisition of function. J Biol Chem. 1988 May 25;263(15):7342–7351. [PubMed] [Google Scholar]
- Olson T. S., Lane M. D. Post-translational acquisition of insulin binding activity by the insulin proreceptor. Correlation to recognition by autoimmune antibody. J Biol Chem. 1987 May 15;262(14):6816–6822. [PubMed] [Google Scholar]
- Rees-Jones R. W., Hedo J. A., Zick Y., Roth J. Insulin-stimulated phosphorylation of the insulin receptor precursor. Biochem Biophys Res Commun. 1983 Oct 31;116(2):417–422. doi: 10.1016/0006-291x(83)90539-9. [DOI] [PubMed] [Google Scholar]
- Sasaoka T., Shigeta Y., Takata Y., Ishibashi O., Sugibayashi M., Hisatomi A., Kobayashi M. Unprocessed insulin proreceptor in cultured fibroblasts from a patient with extreme insulin resistance. Metabolism. 1989 Oct;38(10):990–996. doi: 10.1016/0026-0495(89)90011-5. [DOI] [PubMed] [Google Scholar]
- Sasaoka T., Shigeta Y., Takata Y., Sugibayashi M., Hisatomi A., Kobayashi M. Binding specificity and intramolecular signal transmission of uncleaved insulin proreceptor in transformed lymphocytes from a patient with extreme insulin resistance. Diabetologia. 1989 Jun;32(6):371–377. doi: 10.1007/BF00277261. [DOI] [PubMed] [Google Scholar]
- Takata Y., Kobayashi M., Maegawa H., Watanabe N., Ishibashi O., Shigeta Y., Fujinami A. A primary defect in insulin receptor in a young male patient with insulin resistance. Metabolism. 1986 Oct;35(10):950–955. doi: 10.1016/0026-0495(86)90060-0. [DOI] [PubMed] [Google Scholar]
- Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
- Williams J. F., McClain D. A., Dull T. J., Ullrich A., Olefsky J. M. Characterization of an insulin receptor mutant lacking the subunit processing site. J Biol Chem. 1990 May 25;265(15):8463–8469. [PubMed] [Google Scholar]
- Yoshimasa Y., Seino S., Whittaker J., Kakehi T., Kosaki A., Kuzuya H., Imura H., Bell G. I., Steiner D. F. Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. Science. 1988 May 6;240(4853):784–787. doi: 10.1126/science.3283938. [DOI] [PubMed] [Google Scholar]
- van der Vorm E. R., van der Zon G. C., Möller W., Krans H. M., Lindhout D., Maassen J. A. An Arg for Gly substitution at position 31 in the insulin receptor, linked to insulin resistance, inhibits receptor processing and transport. J Biol Chem. 1992 Jan 5;267(1):66–71. [PubMed] [Google Scholar]






