Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jan 15;305(Pt 2):681–684. doi: 10.1042/bj3050681

A novel isoenzyme of aldehyde dehydrogenase specifically involved in the biosynthesis of 9-cis and all-trans retinoic acid.

J Labrecque 1, F Dumas 1, A Lacroix 1, P V Bhat 1
PMCID: PMC1136415  PMID: 7832787

Abstract

The pleiotropic effects of retinoids are mediated by two families of nuclear receptors: RAR (retinoic acid receptors) and RXR (retinoid X receptors). 9-cis-Retinoic acid is a specific ligand for RXR receptors, whereas either 9-cis- or all-trans-retinoic acid activates the RAR receptor family. The existence of RXRs suggests a new role for isomerization in the biology of retinoic acid. We report here the identification of an aldehyde dehydrogenase in the rat kidney that catalysed the oxidation of 9-cis- and all-trans-retinal to corresponding retinoic acids with high efficiency, 9-cis-retinal being 2-fold more active than all-trans-retinal. Based on several criteria, such as amino acid sequence, pH optimum, and inhibition by chloral hydrate, this enzyme was found to be a novel isoenzyme of aldehyde dehydrogenase. 9-cis-Retinol, the precursor for the biosynthesis of 9-cis-retinal was identified in the rat kidney. The occurrence of endogenous 9-cis-retinol and the existence of specific dehydrogenase which participates in the catalysis of 9-cis-retinal suggest that all-trans-retinoi(d) isomerization to 9-cis-retinoi(d) occurs at the retinol level, analogous to all-trans-retinol isomerization to 11-cis-retinol in the visual cycle.

Full text

PDF
681

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein P. S., Law W. C., Rando R. R. Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1849–1853. doi: 10.1073/pnas.84.7.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhat P. V., Co H. T., Lacroix A. Effect of 2-alkanols on the separation of geometric isomers of retinol in non-aqueous high-performance liquid chromatography. J Chromatogr. 1983 Apr 29;260(1):129–136. doi: 10.1016/0021-9673(83)80015-6. [DOI] [PubMed] [Google Scholar]
  3. Bhat P. V., Lacroix A. Effects of retinoic acid on the concentrations of radioactive metabolites of retinol in tissues of rats maintained on a retinol-deficient diet. Can J Physiol Pharmacol. 1991 Jun;69(6):826–830. doi: 10.1139/y91-124. [DOI] [PubMed] [Google Scholar]
  4. Bhat P. V., Poissant L., Falardeau P., Lacroix A. Enzymatic oxidation of all-trans retinal to retinoic acid in rat tissues. Biochem Cell Biol. 1988 Jul;66(7):735–740. doi: 10.1139/o88-084. [DOI] [PubMed] [Google Scholar]
  5. Bhat P. V., Poissant L., Lacroix A. Properties of retinal-oxidizing enzyme activity in rat kidney. Biochim Biophys Acta. 1988 Nov 17;967(2):211–217. doi: 10.1016/0304-4165(88)90011-6. [DOI] [PubMed] [Google Scholar]
  6. Bridges C. D., Alvarez R. A. The visual cycle operates via an isomerase acting on all-trans retinol in the pigment epithelium. Science. 1987 Jun 26;236(4809):1678–1680. doi: 10.1126/science.3603006. [DOI] [PubMed] [Google Scholar]
  7. Carlberg C., Saurat J. H., Siegenthaler G. 9-cis-retinoic acid is a natural antagonist for the retinoic acid receptor response pathway. Biochem J. 1993 Oct 15;295(Pt 2):343–346. doi: 10.1042/bj2950343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunn T. J., Koleske A. J., Lindahl R., Pitot H. C. Phenobarbital-inducible aldehyde dehydrogenase in the rat. cDNA sequence and regulation of the mRNA by phenobarbital in responsive rats. J Biol Chem. 1989 Aug 5;264(22):13057–13065. [PubMed] [Google Scholar]
  9. Giguere V., Ong E. S., Segui P., Evans R. M. Identification of a receptor for the morphogen retinoic acid. Nature. 1987 Dec 17;330(6149):624–629. doi: 10.1038/330624a0. [DOI] [PubMed] [Google Scholar]
  10. Hempel J., von Bahr-Lindström H., Jörnvall H. Aldehyde dehydrogenase from human liver. Primary structure of the cytoplasmic isoenzyme. Eur J Biochem. 1984 May 15;141(1):21–35. doi: 10.1111/j.1432-1033.1984.tb08150.x. [DOI] [PubMed] [Google Scholar]
  11. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  12. Heyman R. A., Mangelsdorf D. J., Dyck J. A., Stein R. B., Eichele G., Evans R. M., Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992 Jan 24;68(2):397–406. doi: 10.1016/0092-8674(92)90479-v. [DOI] [PubMed] [Google Scholar]
  13. Ishiguro S., Suzuki Y., Tamai M., Mizuno K. Purification of retinol dehydrogenase from bovine retinal rod outer segments. J Biol Chem. 1991 Aug 15;266(23):15520–15524. [PubMed] [Google Scholar]
  14. Krust A., Kastner P., Petkovich M., Zelent A., Chambon P. A third human retinoic acid receptor, hRAR-gamma. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5310–5314. doi: 10.1073/pnas.86.14.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Labrecque J., Bhat P. V., Lacroix A. Purification and partial characterization of a rat kidney aldehyde dehydrogenase that oxidizes retinal to retinoic acid. Biochem Cell Biol. 1993 Jan-Feb;71(1-2):85–89. doi: 10.1139/o93-013. [DOI] [PubMed] [Google Scholar]
  16. Levin A. A., Sturzenbecker L. J., Kazmer S., Bosakowski T., Huselton C., Allenby G., Speck J., Kratzeisen C., Rosenberger M., Lovey A. 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature. 1992 Jan 23;355(6358):359–361. doi: 10.1038/355359a0. [DOI] [PubMed] [Google Scholar]
  17. Lindahl R., Evces S. Rat liver aldehyde dehydrogenase. II. Isolation and characterization of four inducible isozymes. J Biol Chem. 1984 Oct 10;259(19):11991–11996. [PubMed] [Google Scholar]
  18. MacDonald P. N., Ong D. E. Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II. J Biol Chem. 1987 Aug 5;262(22):10550–10556. [PubMed] [Google Scholar]
  19. MacDonald P. N., Ong D. E. Evidence for a lecithin-retinol acyltransferase activity in the rat small intestine. J Biol Chem. 1988 Sep 5;263(25):12478–12482. [PubMed] [Google Scholar]
  20. Mangelsdorf D. J., Borgmeyer U., Heyman R. A., Zhou J. Y., Ong E. S., Oro A. E., Kakizuka A., Evans R. M. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 1992 Mar;6(3):329–344. doi: 10.1101/gad.6.3.329. [DOI] [PubMed] [Google Scholar]
  21. Mangelsdorf D. J., Ong E. S., Dyck J. A., Evans R. M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature. 1990 May 17;345(6272):224–229. doi: 10.1038/345224a0. [DOI] [PubMed] [Google Scholar]
  22. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  23. Ong D. E., Chytil F. Specificity of cellular retinol-binding protein for compounds with vitamin A activity. Nature. 1975 May 1;255(5503):74–75. doi: 10.1038/255074a0. [DOI] [PubMed] [Google Scholar]
  24. Ong D. E., Crow J. A., Chytil F. Radioimmunochemical determination of cellular retinol- and cellular retinoic acid-binding proteins in cytosols of rat tissues. J Biol Chem. 1982 Nov 25;257(22):13385–13389. [PubMed] [Google Scholar]
  25. Parés X., Julià P. Isoenzymes of alcohol dehydrogenase in retinoid metabolism. Methods Enzymol. 1990;189:436–441. doi: 10.1016/0076-6879(90)89319-d. [DOI] [PubMed] [Google Scholar]
  26. Petkovich M., Brand N. J., Krust A., Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987 Dec 3;330(6147):444–450. doi: 10.1038/330444a0. [DOI] [PubMed] [Google Scholar]
  27. Pocker Y., Li H. The catalytic specificity of liver alcohol dehydrogenase: vitamin A alcohol and vitamin A aldehyde activities. Adv Exp Med Biol. 1993;328:411–418. doi: 10.1007/978-1-4615-2904-0_43. [DOI] [PubMed] [Google Scholar]
  28. Posch K. C., Boerman M. H., Burns R. D., Napoli J. L. Holocellular retinol binding protein as a substrate for microsomal retinal synthesis. Biochemistry. 1991 Jun 25;30(25):6224–6230. doi: 10.1021/bi00239a021. [DOI] [PubMed] [Google Scholar]
  29. Rongnoparut P., Weaver S. Isolation and characterization of a cytosolic aldehyde dehydrogenase-encoding cDNA from mouse liver. Gene. 1991 May 30;101(2):261–265. doi: 10.1016/0378-1119(91)90421-7. [DOI] [PubMed] [Google Scholar]
  30. Rout U. K., Holmes R. S. Isoelectric focusing studies of aldehyde dehydrogenases from mouse tissues: variant phenotypes of liver, stomach and testis isozymes. Comp Biochem Physiol B. 1985;81(3):647–651. doi: 10.1016/0305-0491(85)90380-3. [DOI] [PubMed] [Google Scholar]
  31. Saari J. C., Bredberg L., Garwin G. G. Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem. 1982 Nov 25;257(22):13329–13333. [PubMed] [Google Scholar]
  32. Thaller C., Eichele G. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature. 1987 Jun 18;327(6123):625–628. doi: 10.1038/327625a0. [DOI] [PubMed] [Google Scholar]
  33. Wellner D., Panneerselvam C., Horecker B. L. Sequencing of peptides and proteins with blocked N-terminal amino acids: N-acetylserine or N-acetylthreonine. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1947–1949. doi: 10.1073/pnas.87.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yost R. W., Harrison E. H., Ross A. C. Esterification by rat liver microsomes of retinol bound to cellular retinol-binding protein. J Biol Chem. 1988 Dec 15;263(35):18693–18701. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES