Abstract
Gastric peroxidase (GPO) was purified to apparent homogeneity to characterize its major physiological electron donor. The enzyme (RZ = 0.7), with a subunit molecular mass of 50 kDa, is a glycoprotein, with a relative abundance of aspartic and glutamic acid over arginine and lysine. It has a Soret maximum at 412 nm, which is shifted to 426 nm by H2O2 due to formation of compound II. Although the physiological electron donors I-, Br- and SCN-, but not Cl-, are oxidized by GPO optimally at acid pH, only I- and SCN- are oxidized appreciably at physiological pH. Considering that the I- concentration in stomach is less than 1 microM, whereas the SCN- concentration is about 250 microM, SCN- may act as a major electron donor for GPO. Moreover, SCN- oxidation remains unaltered in the presence of physiological concentrations of other halides. The second-order rate constant for the reaction of GPO with H2O2 (k1) and compound I with SCN- (k2) at pH 7 was found to be 8 x 10(7) M-1.s-1 and 2 x 10(5) M-1.s-1 respectively. GPO has significant pseudocatalase activity also in the presence of I- or Br-, but it is blocked by SCN-. The SCN- oxidation product OSCN- may be reduced back to SCN- by cellular GSH, and GSSG may be reduced back to GSH by glutathione reductase and NADPH. In a system reconstituted with pure glutathione reductase, NADPH, GSH, SCN- and H2O2. GPO-catalysed SCN- oxidation could be coupled to NADPH oxidation. This system where GPO utilizes SCN- as the major physiological electron donor may operate efficiently to scavenge intracellular H2O2.
Full text
PDF![59](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da38/1136429/786de7b40902/biochemj00072-0067.png)
![60](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da38/1136429/4a91324833d8/biochemj00072-0068.png)
![61](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da38/1136429/9d7a32a2128d/biochemj00072-0069.png)
![62](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da38/1136429/4d3d6c028b0a/biochemj00072-0070.png)
![63](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da38/1136429/e63e03d6300a/biochemj00072-0071.png)
![64](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da38/1136429/56db06632a05/biochemj00072-0072.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aune T. M., Thomas E. L. Accumulation of hypothiocyanite ion during peroxidase-catalyzed oxidation of thiocyanate ion. Eur J Biochem. 1977 Oct 17;80(1):209–214. doi: 10.1111/j.1432-1033.1977.tb11873.x. [DOI] [PubMed] [Google Scholar]
- Aune T. M., Thomas E. L. Oxidation of protein sulfhydryls by products of peroxidase-catalyzed oxidation of thiocyanate ion. Biochemistry. 1978 Mar 21;17(6):1005–1010. doi: 10.1021/bi00599a010. [DOI] [PubMed] [Google Scholar]
- Bandyopadhyay U., Bhattacharyya D. K., Banerjee R. K. Mechanism-based inactivation of gastric peroxidase by mercaptomethylimidazole. Biochem J. 1993 Nov 15;296(Pt 1):79–84. doi: 10.1042/bj2960079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bandyopadhyay U., Bhattacharyya D. K., Chatterjee R., Banerjee R. K. Localization of gastric peroxidase and its inhibition by mercaptomethylimidazole, an inducer of gastric acid secretion. Biochem J. 1992 Jun 1;284(Pt 2):305–312. doi: 10.1042/bj2840305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banerjee R. K., Datta A. G. Gastric peroxidase--localization, catalytic properties and possible role in extrathyroidal thyroid hormone formation. Acta Endocrinol (Copenh) 1981 Feb;96(2):208–214. doi: 10.1530/acta.0.0960208. [DOI] [PubMed] [Google Scholar]
- Banerjee R. K. Membrane peroxidases. Mol Cell Biochem. 1988 Oct;83(2):105–128. doi: 10.1007/BF00226140. [DOI] [PubMed] [Google Scholar]
- Berglindh T., Helander H. F., Obrink K. J. Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands. Acta Physiol Scand. 1976 Aug;97(4):401–414. doi: 10.1111/j.1748-1716.1976.tb10281.x. [DOI] [PubMed] [Google Scholar]
- Bhattacharjee M., Bose A. K., Banerjee R. K. Histamine H2-receptor mediated stimulation of gastric acid secretion by mercaptomethylimidazole. Biochem Pharmacol. 1989 Mar 15;38(6):907–914. doi: 10.1016/0006-2952(89)90279-7. [DOI] [PubMed] [Google Scholar]
- Body S. C., Sasame H. A., Body M. R. High concentrations of glutathione in glandular stomach: possible implications for carcinogenesis. Science. 1979 Sep 7;205(4410):1010–1012. doi: 10.1126/science.572989. [DOI] [PubMed] [Google Scholar]
- Carlberg I., Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484–490. doi: 10.1016/s0076-6879(85)13062-4. [DOI] [PubMed] [Google Scholar]
- Carlström A. Physical and compositional investigations of the subfractions of lactoperoxidase. Acta Chem Scand. 1969;23(1):185–202. doi: 10.3891/acta.chem.scand.23-0185. [DOI] [PubMed] [Google Scholar]
- Das D., Banerjee R. K. Effect of stress on the antioxidant enzymes and gastric ulceration. Mol Cell Biochem. 1993 Aug 25;125(2):115–125. doi: 10.1007/BF00936440. [DOI] [PubMed] [Google Scholar]
- De S. K., Banerjee R. K. Glucocorticoid effects on gastric peroxidase activity. Biochim Biophys Acta. 1984 Aug 21;800(3):233–241. doi: 10.1016/0304-4165(84)90401-x. [DOI] [PubMed] [Google Scholar]
- De S. K., Banerjee R. K. Purification, characterization and origin of rat gastric peroxidase. Eur J Biochem. 1986 Oct 15;160(2):319–325. doi: 10.1111/j.1432-1033.1986.tb09974.x. [DOI] [PubMed] [Google Scholar]
- De S. K., De M., Banerjee R. K. Localization and origin of the intestinal peroxidase--effect of adrenal glucocorticoids. J Steroid Biochem. 1986 Feb;24(2):629–635. doi: 10.1016/0022-4731(86)90130-5. [DOI] [PubMed] [Google Scholar]
- Harrison J. E., Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem. 1976 Mar 10;251(5):1371–1374. [PubMed] [Google Scholar]
- Holzbecher J., Ryan D. E. The rapid determination of total bromine and iodine in biological fluids by neutron activation. Clin Biochem. 1980 Dec;13(6):277–278. doi: 10.1016/s0009-9120(80)80009-9. [DOI] [PubMed] [Google Scholar]
- JAGO G. R., MORRISON M. Anti-streptococcal activity of lactoperoxidase III. Proc Soc Exp Biol Med. 1962 Dec;111:585–588. doi: 10.3181/00379727-111-27862. [DOI] [PubMed] [Google Scholar]
- Kimura S., Jellinck P. H. Studies on mammalian intestinal peroxidase. Biochem J. 1982 Aug 1;205(2):271–279. doi: 10.1042/bj2050271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOGOTHETOPOULOS J. H., MYANT N. B. Concentration of radio-iodide and 35S-labelled thiocyanate by the stomach of the hamster. J Physiol. 1956 Jul 27;133(1):213–219. doi: 10.1113/jphysiol.1956.sp005579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lambeir A. M., Dunford H. B. A steady state kinetic analysis of the reaction of chloroperoxidase with peracetic acid, chloride, and 2-chlorodimedone. J Biol Chem. 1983 Nov 25;258(22):13558–13563. [PubMed] [Google Scholar]
- Magnusson R. P., Taurog A., Dorris M. L. Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase. J Biol Chem. 1984 Jan 10;259(1):197–205. [PubMed] [Google Scholar]
- Magnusson R. P., Taurog A. Iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase. Biochem Biophys Res Commun. 1983 Apr 29;112(2):475–481. doi: 10.1016/0006-291x(83)91489-4. [DOI] [PubMed] [Google Scholar]
- Mansson-Rahemtulla B., Baldone D. C., Pruitt K. M., Rahemtulla F. Specific assays for peroxidases in human saliva. Arch Oral Biol. 1986;31(10):661–668. doi: 10.1016/0003-9969(86)90095-6. [DOI] [PubMed] [Google Scholar]
- Mansson-Rahemtulla B., Rahemtulla F., Baldone D. C., Pruitt K. M., Hjerpe A. Purification and characterization of human salivary peroxidase. Biochemistry. 1988 Jan 12;27(1):233–239. doi: 10.1021/bi00401a035. [DOI] [PubMed] [Google Scholar]
- Morrison M., Schonbaum G. R. Peroxidase-catalyzed halogenation. Annu Rev Biochem. 1976;45:861–888. doi: 10.1146/annurev.bi.45.070176.004241. [DOI] [PubMed] [Google Scholar]
- Nathan C. F., Klebanoff S. J. Augmentation of spontaneous macrophage-mediated cytolysis by eosinophil peroxidase. J Exp Med. 1982 May 1;155(5):1291–1308. doi: 10.1084/jem.155.5.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oka S., Sibazaki Y., Tahara S. Direct potentiometric determination of chloride ion in whole blood. Anal Chem. 1981 Apr;53(4):588–593. doi: 10.1021/ac00227a007. [DOI] [PubMed] [Google Scholar]
- Olsen R. L., Little C. Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochem J. 1983 Mar 1;209(3):781–787. doi: 10.1042/bj2090781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piatt J., O'Brien P. J. Singlet oxygen formation by a peroxidase, H2O2 and halide system. Eur J Biochem. 1979 Jan 15;93(2):323–332. doi: 10.1111/j.1432-1033.1979.tb12826.x. [DOI] [PubMed] [Google Scholar]
- Pruitt K. M., Mansson-Rahemtulla B., Baldone D. C., Rahemtulla F. Steady-state kinetics of thiocyanate oxidation catalyzed by human salivary peroxidase. Biochemistry. 1988 Jan 12;27(1):240–245. doi: 10.1021/bi00401a036. [DOI] [PubMed] [Google Scholar]
- Pruitt K. M., Mansson-Rahemtulla B., Tenovuo J. Detection of the hypothiocyanite (OSCN-) ion in human parotid saliva and the effect of pH on OSCN- generation in the salivary peroxidase antimicrobial system. Arch Oral Biol. 1983;28(6):517–525. doi: 10.1016/0003-9969(83)90184-x. [DOI] [PubMed] [Google Scholar]
- Sedlak J., Lindsay R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 1968 Oct 24;25(1):192–205. doi: 10.1016/0003-2697(68)90092-4. [DOI] [PubMed] [Google Scholar]
- Slungaard A., Mahoney J. R., Jr Bromide-dependent toxicity of eosinophil peroxidase for endothelium and isolated working rat hearts: a model for eosinophilic endocarditis. J Exp Med. 1991 Jan 1;173(1):117–126. doi: 10.1084/jem.173.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slungaard A., Mahoney J. R., Jr Thiocyanate is the major substrate for eosinophil peroxidase in physiologic fluids. Implications for cytotoxicity. J Biol Chem. 1991 Mar 15;266(8):4903–4910. [PubMed] [Google Scholar]
- Wever R., Kast W. M., Kasinoedin J. H., Boelens R. The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase. Biochim Biophys Acta. 1982 Dec 20;709(2):212–219. doi: 10.1016/0167-4838(82)90463-0. [DOI] [PubMed] [Google Scholar]