Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jan 1;305(Pt 1):103–110. doi: 10.1042/bj3050103

Pancreatic acinar-cell desensitization alters InsP3 production and Ca2+ mobilization under conditions where InsP3 receptor remains intact.

M Servant 1, G Guillemette 1, J Morisset 1
PMCID: PMC1136436  PMID: 7529994

Abstract

Desensitization of rat pancreatic acinar cells with 0.1 mM carbamoylcholine (Cch) or 0.5 nM caerulein (CAE), a cholecystokinin (CCK) agonist, altered the subsequent secretory responses to these two agonists. Changes in receptor affinities, shifts in receptor populations, receptor internalization and phosphorylation are the major modifications affecting the muscarinic and CCK receptors in response to desensitization. In this study, post-receptor alterations were examined in order to explain the altered enzyme secretion. Cch or CAE desensitization resulted in decreased Ca2+ release in response to CAE and Cch respectively. Under desensitizing conditions, the biochemical and pharmacological properties of the InsP3 receptor were not affected. Control and desensitized acini had similar Bmax. and KD values. The Ca(2+)-channel property of the InsP3 receptor was not affected, either, since Ca2+ release in response to increasing concentrations of InsP3 remained comparable in both groups of saponin-permeabilized acini. Finally, the quantities of InsP3 formed in response to Cch and CAE, measured by InsP3 radioreceptor assay, were significantly decreased in the Cch- and CAE-desensitized groups, and these decreases were not due to increased InsP3 turnover. These new data indicate that desensitization of acinar cells with Cch and CAE causes post-receptor modifications resulting in decreased InsP3 formation and decreased intracellular Ca2+ mobilization. It is suggested that the attenuated Ca2+ response is related to a decreased formation of InsP3 from PtdInsP2 hydrolysis and that phospholipase C could be the immediate target of this regulation.

Full text

PDF
103

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelmoumene S., Gardner J. D. Cholecystokinin-induced desensitization of enzyme secretion in dispersed acini from guinea pig pancreas. Am J Physiol. 1980 Oct;239(4):G272–G279. doi: 10.1152/ajpgi.1980.239.4.G272. [DOI] [PubMed] [Google Scholar]
  2. Ansah T. A., Dho S., Case R. M. Calcium concentration and amylase secretion in guinea pig pancreatic acini: interactions between carbachol, cholecystokinin octapeptide and the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate. Biochim Biophys Acta. 1986 Dec 19;889(3):326–333. doi: 10.1016/0167-4889(86)90195-3. [DOI] [PubMed] [Google Scholar]
  3. Asselin J., Larose L., Morisset J. Short-term cholinergic desensitization of rat pancreatic secretory response. Am J Physiol. 1987 Mar;252(3 Pt 1):G392–G397. doi: 10.1152/ajpgi.1987.252.3.G392. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Connolly T. M., Bross T. E., Majerus P. W. Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate. J Biol Chem. 1985 Jul 5;260(13):7868–7874. [PubMed] [Google Scholar]
  6. DeBlasi A., O'Reilly K., Motulsky H. J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol Sci. 1989 Jun;10(6):227–229. doi: 10.1016/0165-6147(89)90266-6. [DOI] [PubMed] [Google Scholar]
  7. Decoster C., Moreau C., Dumont J. E. Desensitization of carbamylcholine-mediated cyclic GMP accumulation in dog thyroid slices. Biochim Biophys Acta. 1984 Apr 10;798(2):235–239. doi: 10.1016/0304-4165(84)90310-6. [DOI] [PubMed] [Google Scholar]
  8. Downes C. P., Hawkins P. T., Irvine R. F. Inositol 1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland. Biochem J. 1986 Sep 1;238(2):501–506. doi: 10.1042/bj2380501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferris C. D., Cameron A. M., Bredt D. S., Huganir R. L., Snyder S. H. Autophosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem. 1992 Apr 5;267(10):7036–7041. [PubMed] [Google Scholar]
  10. Ferris C. D., Huganir R. L., Bredt D. S., Cameron A. M., Snyder S. H. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2232–2235. doi: 10.1073/pnas.88.6.2232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferris C. D., Huganir R. L., Supattapone S., Snyder S. H. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature. 1989 Nov 2;342(6245):87–89. doi: 10.1038/342087a0. [DOI] [PubMed] [Google Scholar]
  12. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  13. Hootman S. R., Brown M. E., Williams J. A., Logsdon C. D. Regulation of muscarinic acetylcholine receptors in cultured guinea pig pancreatic acini. Am J Physiol. 1986 Jul;251(1 Pt 1):G75–G83. doi: 10.1152/ajpgi.1986.251.1.G75. [DOI] [PubMed] [Google Scholar]
  14. Ishiguro H., Hayakawa T., Kondo T., Shibata T., Kitagawa M., Sakai Y., Sobajima H., Nakae Y., Tanikawa M., Hidaka H. Effects of calmodulin inhibitors on amylase secretion from rat pancreatic acini. Digestion. 1992;53(3-4):162–170. [PubMed] [Google Scholar]
  15. Jim K. F., Triggle D. J. Desensitization of ionophore A23187 responses by muscarinic receptor stimulation in intestinal smooth muscle. Biochem Pharmacol. 1981 Jan 1;30(1):95–96. doi: 10.1016/0006-2952(81)90289-6. [DOI] [PubMed] [Google Scholar]
  16. Joseph S. K., Ryan S. V. Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. J Biol Chem. 1993 Nov 5;268(31):23059–23065. [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Larose L., Poirier G. G., Dumont Y., Fregeau C., Blanchard L., Morisset J. Modulation of rat pancreatic amylase secretion and muscarinic receptor populations by chronic bethanechol treatment. Eur J Pharmacol. 1983 Nov 25;95(3-4):215–223. doi: 10.1016/0014-2999(83)90637-4. [DOI] [PubMed] [Google Scholar]
  19. Livingstone M. S., Tempel B. L. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila. Nature. 1983 May 5;303(5912):67–70. doi: 10.1038/303067a0. [DOI] [PubMed] [Google Scholar]
  20. Lohse M. J. Molecular mechanisms of membrane receptor desensitization. Biochim Biophys Acta. 1993 Nov 7;1179(2):171–188. doi: 10.1016/0167-4889(93)90139-g. [DOI] [PubMed] [Google Scholar]
  21. Matozaki T., Williams J. A. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis. J Biol Chem. 1989 Sep 5;264(25):14729–14734. [PubMed] [Google Scholar]
  22. Morisset J., Paquette B., Benrezzak O. The ability of staurosporine to modulate pancreatic acinar cell desensitization by TPA, carbamylcholine and caerulein. Cell Signal. 1991;3(2):119–126. doi: 10.1016/0898-6568(91)90018-p. [DOI] [PubMed] [Google Scholar]
  23. Otsuki M., Okabayashi Y., Ohki A., Hootman S. R., Baba S., Williams J. A. Amylase secretion by isolated pancreatic acini after acute cholecystokinin treatment in vivo. Am J Physiol. 1984 Apr;246(4 Pt 1):G419–G425. doi: 10.1152/ajpgi.1984.246.4.G419. [DOI] [PubMed] [Google Scholar]
  24. Otsuki M., Williams J. A. Amylase secretion by isolated pancreatic acini after chronic cholecystokinin treatment in vivo. Am J Physiol. 1983 Jun;244(6):G683–G688. doi: 10.1152/ajpgi.1983.244.6.G683. [DOI] [PubMed] [Google Scholar]
  25. Peikin S. R., Rottman A. J., Batzri S., Gardner J. D. Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas. Am J Physiol. 1978 Dec;235(6):E743–E749. doi: 10.1152/ajpendo.1978.235.6.E743. [DOI] [PubMed] [Google Scholar]
  26. Poitras M., Bernier S., Boulay G., Fournier A., Guillemette G. Interaction of benzene 1,2,4-trisphosphate with inositol 1,4,5-trisphosphate receptor and metabolizing enzymes. Eur J Pharmacol. 1993 Feb 15;244(3):203–210. doi: 10.1016/0922-4106(93)90145-y. [DOI] [PubMed] [Google Scholar]
  27. Rana R. S., Sekar M. C., Hokin L. E., MacDonald M. J. A possible role for glucose metabolites in the regulation of inositol-1,4,5-trisphosphate 5-phosphomonoesterase activity in pancreatic islets. J Biol Chem. 1986 Apr 25;261(12):5237–5240. [PubMed] [Google Scholar]
  28. Ryu S. H., Kim U. H., Wahl M. I., Brown A. B., Carpenter G., Huang K. P., Rhee S. G. Feedback regulation of phospholipase C-beta by protein kinase C. J Biol Chem. 1990 Oct 15;265(29):17941–17945. [PubMed] [Google Scholar]
  29. Saluja A. K., Powers R. E., Steer M. L. Inositol trisphosphate independent increase of intracellular free calcium and amylase secretion in pancreatic acini. Biochem Biophys Res Commun. 1989 Oct 16;164(1):8–13. doi: 10.1016/0006-291x(89)91675-6. [DOI] [PubMed] [Google Scholar]
  30. Schulz I. Messenger role of calcium in function of pancreatic acinar cells. Am J Physiol. 1980 Nov;239(5):G335–G347. doi: 10.1152/ajpgi.1980.239.5.G335. [DOI] [PubMed] [Google Scholar]
  31. Servant M., Guillemette G., Morisset J. Pharmacologic characterization of the inositol trisphosphate receptor in rat pancreas. Pancreas. 1994 Sep;9(5):591–598. doi: 10.1097/00006676-199409000-00009. [DOI] [PubMed] [Google Scholar]
  32. Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., Snyder S. H. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8747–8750. doi: 10.1073/pnas.85.22.8747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vinayek R., Patto R. J., Menozzi D., Gregory J., Mrozinski J. E., Jensen R. T., Gardner J. D. Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells. Biochim Biophys Acta. 1993 Mar 10;1176(1-2):183–191. doi: 10.1016/0167-4889(93)90195-u. [DOI] [PubMed] [Google Scholar]
  34. Willcocks A. L., Nahorski S. R. ATP and the binding of [3H]inositol 1,4,5-trisphosphate to its receptor. Biochem J. 1988 Nov 1;255(3):1061–1061. doi: 10.1042/bj2551061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Willems P. H., Van den Broek B. A., Van Os C. H., De Pont J. J. Inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized pancreatic acinar cells by hormonal and phorbol ester pretreatment. J Biol Chem. 1989 Jun 15;264(17):9762–9767. [PubMed] [Google Scholar]
  36. Wojcikiewicz R. J., Nahorski S. R. Chronic muscarinic stimulation of SH-SY5Y neuroblastoma cells suppresses inositol 1,4,5-trisphosphate action. Parallel inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ mobilization and inositol 1,4,5-trisphosphate binding. J Biol Chem. 1991 Nov 25;266(33):22234–22241. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES