Abstract
Free in solution, the immunosuppressive compounds cyclosporin A (CsA), FK506, ascomycin and rapamycin are present in many solvents in various slowly interconverting conformations. Together with their cellular receptor proteins, cyclophilin (CyP) and FK506-binding protein (FKBP), however, these inhibitors have been shown to have a homogeneous conformation. The existence of a slow cis-trans interconversion of an imidic bond in the inhibitor molecule during the course of the formation of the CsA-CyP18cy complex (where CyP18cy is human 18 kDa cytosolic CyP) prompted us to investigate the reaction of the peptidomacrolides FK506, ascomycin and rapamycin with two specific binding-proteins in more detail. Since formation of the FK506-FKBP complex results in the inhibition of the peptidylprolyl cis-trans-isomerase activity of the binding protein, we used the enzyme's decrease in enzymic activity to monitor binding of the inhibitors to their enzyme targets. For FK506, the kinetics of inhibition of human 12 kDa cytosolic FKBP (FKBP12cy) were clearly dependent on time. Subsequent to a rapid inactivation reaction, not resolved in its kinetics due to manual mixing, a slow dominant first-order inactivation process with a relaxation time of 1163 s at 10 degrees C was observed. Concomitantly the Ki value of the slow phase dropped 2.6-fold within the first 60 min of incubation. Using the FKBP12cy homologue 25 kDa membrane FKBP (FKBP25mem), a bacterial peptidylprolyl cis-trans-isomerase, the rate and amplitudes of the inhibition reactions were very similar to FKBP12cy. On the other hand, the kinetics and amplitudes of the inhibition of FKBP12cy varied significantly if rapamycin was used as an inhibitor instead of FK 506. Owing to reduced conformation transition in rapamycin upon binding to FKBP12cy, the slow phase during inhibition was significantly decreased in amplitude. A likely reason for this became apparent when the activation-enthalpy and the pH-dependence of the rate constants of the slow phase were determined. We conclude that the cis to trans interconversion of the pipecolinyl bond of the three peptidomacrolides may be responsible for the slow process. There was no indication of a suicide catalysis of this process by FKBPs.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akagi H., Reynolds A., Hjelm M. Cyclosporin A and its metabolites, distribution in blood and tissues. J Int Med Res. 1991 Jan-Feb;19(1):1–18. doi: 10.1177/030006059101900101. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
- Brenner B., Francis C. W., Totterman S., Kessler C. M., Rao A. K., Rubin R., Kwaan H. C., Gabriel K. R., Marder V. J. Quantitation of venous clot lysis with the D-dimer immunoassay during fibrinolytic therapy requires correction for soluble fibrin degradation. Circulation. 1990 Jun;81(6):1818–1825. doi: 10.1161/01.cir.81.6.1818. [DOI] [PubMed] [Google Scholar]
- Fesik S. W., Gampe R. T., Jr, Holzman T. F., Egan D. A., Edalji R., Luly J. R., Simmer R., Helfrich R., Kishore V., Rich D. H. Isotope-edited NMR of cyclosporin A bound to cyclophilin: evidence for a trans 9,10 amide bond. Science. 1990 Dec 7;250(4986):1406–1409. doi: 10.1126/science.2255910. [DOI] [PubMed] [Google Scholar]
- Fischer G., Bang H., Mech C. Nachweis einer Enzymkatalyse für die cis-trans-Isomerisierung der Peptidbindung in prolinhaltigen Peptiden. Biomed Biochim Acta. 1984;43(10):1101–1111. [PubMed] [Google Scholar]
- Fischer G., Heins J., Barth A. The conformation around the peptide bond between the P1- and P2-positions is important for catalytic activity of some proline-specific proteases. Biochim Biophys Acta. 1983 Feb 15;742(3):452–462. doi: 10.1016/0167-4838(83)90261-3. [DOI] [PubMed] [Google Scholar]
- Galat A. Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem. 1993 Sep 15;216(3):689–707. doi: 10.1111/j.1432-1033.1993.tb18189.x. [DOI] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Hacker J., Ott M., Wintermeyer E., Ludwig B., Fischer G. Analysis of virulence factors of Legionella pneumophila. Zentralbl Bakteriol. 1993 Apr;278(2-3):348–358. doi: 10.1016/s0934-8840(11)80851-0. [DOI] [PubMed] [Google Scholar]
- Harrison R. K., Stein R. L. Substrate specificities of the peptidyl prolyl cis-trans isomerase activities of cyclophilin and FK-506 binding protein: evidence for the existence of a family of distinct enzymes. Biochemistry. 1990 Apr 24;29(16):3813–3816. doi: 10.1021/bi00468a001. [DOI] [PubMed] [Google Scholar]
- Kawai M., Lane B. C., Hsieh G. C., Mollison K. W., Carter G. W., Luly J. R. Structure-activity profiles of macrolactam immunosuppressant FK-506 analogues. FEBS Lett. 1993 Jan 25;316(2):107–113. doi: 10.1016/0014-5793(93)81196-7. [DOI] [PubMed] [Google Scholar]
- Ko S. Y., Dalvit C. Conformation of cyclosporin A in polar solvents. Int J Pept Protein Res. 1992 Nov;40(5):380–382. doi: 10.1111/j.1399-3011.1992.tb00314.x. [DOI] [PubMed] [Google Scholar]
- Kofron J. L., Kuzmic P., Kishore V., Colón-Bonilla E., Rich D. H. Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry. 1991 Jun 25;30(25):6127–6134. doi: 10.1021/bi00239a007. [DOI] [PubMed] [Google Scholar]
- Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
- Namiki Y., Kihara N., Koda S., Hane K., Yasuda T. Tautomeric phenomenon of a novel potent immunosuppressant (FK506) in solution. I. Isolation and structure determination of tautomeric compounds. J Antibiot (Tokyo) 1993 Jul;46(7):1149–1155. doi: 10.7164/antibiotics.46.1149. [DOI] [PubMed] [Google Scholar]
- Park S. T., Aldape R. A., Futer O., DeCenzo M. T., Livingston D. J. PPIase catalysis by human FK506-binding protein proceeds through a conformational twist mechanism. J Biol Chem. 1992 Feb 15;267(5):3316–3324. [PubMed] [Google Scholar]
- Petros A. M., Gampe R. T., Jr, Gemmecker G., Neri P., Holzman T. F., Edalji R., Hochlowski J., Jackson M., McAlpine J., Luly J. R. NMR studies of an FK-506 analogue, [U-13C]ascomycin, bound to FKBP: conformation and regions of ascomycin involved in binding. J Med Chem. 1991 Sep;34(9):2925–2928. doi: 10.1021/jm00113a037. [DOI] [PubMed] [Google Scholar]
- Schmid F. X. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev Biophys Biomol Struct. 1993;22:123–142. doi: 10.1146/annurev.bb.22.060193.001011. [DOI] [PubMed] [Google Scholar]
- Siekierka J. J., Wiederrecht G., Cryan J., Hung S. H., Comisky M., Sigal N. H. Potential roles of other FK 506-binding proteins in mediating the effects of FK 506. Transplant Proc. 1991 Dec;23(6):2720–2721. [PubMed] [Google Scholar]
- Spencer D. M., Wandless T. J., Schreiber S. L., Crabtree G. R. Controlling signal transduction with synthetic ligands. Science. 1993 Nov 12;262(5136):1019–1024. doi: 10.1126/science.7694365. [DOI] [PubMed] [Google Scholar]
- Stein R. L. Mechanism of enzymatic and nonenzymatic prolyl cis-trans isomerization. Adv Protein Chem. 1993;44:1–24. doi: 10.1016/s0065-3233(08)60562-8. [DOI] [PubMed] [Google Scholar]
- Van Duyne G. D., Standaert R. F., Karplus P. A., Schreiber S. L., Clardy J. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science. 1991 May 10;252(5007):839–842. doi: 10.1126/science.1709302. [DOI] [PubMed] [Google Scholar]
- Van Duyne G. D., Standaert R. F., Karplus P. A., Schreiber S. L., Clardy J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol. 1993 Jan 5;229(1):105–124. doi: 10.1006/jmbi.1993.1012. [DOI] [PubMed] [Google Scholar]
