Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jan 1;305(Pt 1):329–336. doi: 10.1042/bj3050329

In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance.

K Kanamori 1, B D Ross 1
PMCID: PMC1136467  PMID: 7826349

Abstract

The in vivo activity of phosphate-activated glutaminase (PAG) was measured in the brain of hyperammonaemic rat by 15N n.m.r. Brain glutamine was 15N-enriched by intravenous infusion of 15NH4+ until the concentration of [5-15N]glutamine reached 6.1 mumol/g. Further glutamine synthesis was inhibited by intraperitoneal injection of methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, and the infusate was changed to 14NH4+ during observation of decrease in brain [5-15N]glutamine due to PAG and other glutamine utilization pathways. Progressive decrease in brain [5-15N]glutamine, PAG-catalysed production of 15NH4+ and its subsequent assimilation into glutamate by glutamate dehydrogenase were monitored in vivo by 15N n.m.r. Brain [5-15N]glutamine (15N enrichment of 0.35-0.50) decreased at a rate of 1.2 mumol/h per g of brain. The in vivo PAG activity, determined from the observed rate and the quantity of 15NH4+ produced and subsequently assimilated into glutamate and aspartate, was 0.9-1.3 mumol/h per g. This activity is less than 1.1% of the reported activity in vitro measured in rat brain homogenate at a 10 mM concentration of the activator Pi. Inhibition by ammonia (brain level 1.4 mumol/g) alone does not account for the observed low activity in vivo. The result strongly suggests that, in intact brain, PAG activity is maintained at a low level by a suboptimal in situ concentration of Pi and the strong inhibitory effect of glutamate. The observed PAG activity in vivo is lower than the reported in vivo activity of glutamate decarboxylase which converts glutamate into gamma-aminobutyrate (GABA). The result suggests that PAG-catalysed hydrolysis of glutamine is not the sole provider of glutamate used for GABA synthesis.

Full text

PDF
329

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki C., Kaneko T., Starr A., Pickel V. M. Identification of mitochondrial and non-mitochondrial glutaminase within select neurons and glia of rat forebrain by electron microscopic immunocytochemistry. J Neurosci Res. 1991 Apr;28(4):531–548. doi: 10.1002/jnr.490280410. [DOI] [PubMed] [Google Scholar]
  2. Aoki C., Milner T. A., Sheu K. F., Blass J. P., Pickel V. M. Regional distribution of astrocytes with intense immunoreactivity for glutamate dehydrogenase in rat brain: implications for neuron-glia interactions in glutamate transmission. J Neurosci. 1987 Jul;7(7):2214–2231. doi: 10.1523/JNEUROSCI.07-07-02214.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bachelard H., Badar-Goffer R. NMR spectroscopy in neurochemistry. J Neurochem. 1993 Aug;61(2):412–429. doi: 10.1111/j.1471-4159.1993.tb02141.x. [DOI] [PubMed] [Google Scholar]
  4. Battaglioli G., Martin D. L. GABA synthesis in brain slices is dependent on glutamine produced in astrocytes. Neurochem Res. 1991 Feb;16(2):151–156. doi: 10.1007/BF00965703. [DOI] [PubMed] [Google Scholar]
  5. Behar K. L., den Hollander J. A., Petroff O. A., Hetherington H. P., Prichard J. W., Shulman R. G. Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pHi in the rat brain in vivo: detection by sequential 1H and 31P NMR spectroscopy. J Neurochem. 1985 Apr;44(4):1045–1055. doi: 10.1111/j.1471-4159.1985.tb08723.x. [DOI] [PubMed] [Google Scholar]
  6. Benjamin A. M. Control of glutaminase activity in rat brain cortex in vitro: influence of glutamate, phosphate, ammonium, calcium and hydrogen ions. Brain Res. 1981 Mar 16;208(2):363–377. doi: 10.1016/0006-8993(81)90564-3. [DOI] [PubMed] [Google Scholar]
  7. Bradford H. F., Ward H. K. On glutaminase activity in mammalian synaptosomes. Brain Res. 1976 Jun 25;110(1):115–125. doi: 10.1016/0006-8993(76)90212-2. [DOI] [PubMed] [Google Scholar]
  8. Casu M., Gale K. Intracerebral injection of gamma vinyl GABA: method for measuring rates of GABA synthesis in specific brain regions in vivo. Life Sci. 1981 Aug 17;29(7):681–688. doi: 10.1016/0024-3205(81)90020-5. [DOI] [PubMed] [Google Scholar]
  9. Chamuleau R. A., Bosman D. K., Bovée W. M., Luyten P. R., den Hollander J. A. What the clinician can learn from MR glutamine/glutamate assays. NMR Biomed. 1991 Apr;4(2):103–108. doi: 10.1002/nbm.1940040213. [DOI] [PubMed] [Google Scholar]
  10. Chapman A. G., Evans M. C. Cortical GABA turnover during bicuculline seizures in rats. J Neurochem. 1983 Sep;41(3):886–889. doi: 10.1111/j.1471-4159.1983.tb04823.x. [DOI] [PubMed] [Google Scholar]
  11. Colon A. D., Plaitakis A., Perakis A., Berl S., Clarke D. D. Purification and characterization of a soluble and a particulate glutamate dehydrogenase from rat brain. J Neurochem. 1986 Jun;46(6):1811–1819. doi: 10.1111/j.1471-4159.1986.tb08500.x. [DOI] [PubMed] [Google Scholar]
  12. Cooper A. J., Abraham D. G., Gelbard A. S., Lai J. C., Petito C. K. High activities of glutamine transaminase K (dichlorovinylcysteine beta-lyase) and omega-amidase in the choroid plexus of rat brain. J Neurochem. 1993 Nov;61(5):1731–1741. doi: 10.1111/j.1471-4159.1993.tb09810.x. [DOI] [PubMed] [Google Scholar]
  13. Cooper A. J., Leung L. K., Asano Y. Enzymatic cycling assay for phenylpyruvate. Anal Biochem. 1989 Dec;183(2):210–214. doi: 10.1016/0003-2697(89)90469-7. [DOI] [PubMed] [Google Scholar]
  14. Cooper A. J., McDonald J. M., Gelbard A. S., Gledhill R. F., Duffy T. E. The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem. 1979 Jun 25;254(12):4982–4992. [PubMed] [Google Scholar]
  15. Cooper A. J., Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev. 1987 Apr;67(2):440–519. doi: 10.1152/physrev.1987.67.2.440. [DOI] [PubMed] [Google Scholar]
  16. Dejong C. H., Kampman M. T., Deutz N. E., Soeters P. B. Cerebral cortex ammonia and glutamine metabolism during liver insufficiency-induced hyperammonemia in the rat. J Neurochem. 1992 Sep;59(3):1071–1079. doi: 10.1111/j.1471-4159.1992.tb08349.x. [DOI] [PubMed] [Google Scholar]
  17. Duffy T. E., Cooper A. J., Meister A. Identification of alpha-ketoglutaramate in rat liver, kidney, and brain. Relationship to glutamine transaminase and omega-amidase activities. J Biol Chem. 1974 Dec 10;249(23):7603–7606. [PubMed] [Google Scholar]
  18. Erecińska M., Zaleska M. M., Nelson D., Nissim I., Yudkoff M. Neuronal glutamine utilization: glutamine/glutamate homeostasis in synaptosomes. J Neurochem. 1990 Jun;54(6):2057–2069. doi: 10.1111/j.1471-4159.1990.tb04911.x. [DOI] [PubMed] [Google Scholar]
  19. Farrow N. A., Kanamori K., Ross B. D., Parivar F. A 15N-n.m.r. study of cerebral, hepatic and renal nitrogen metabolism in hyperammonaemic rats. Biochem J. 1990 Sep 1;270(2):473–481. doi: 10.1042/bj2700473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hamberger A. C., Chiang G. H., Nylén E. S., Scheff S. W., Cotman C. W. Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res. 1979 Jun 8;168(3):513–530. doi: 10.1016/0006-8993(79)90306-8. [DOI] [PubMed] [Google Scholar]
  21. Haser W. G., Shapiro R. A., Curthoys N. P. Comparison of the phosphate-dependent glutaminase obtained from rat brain and kidney. Biochem J. 1985 Jul 15;229(2):399–408. doi: 10.1042/bj2290399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hindfelt B., Plum F., Duffy T. E. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 1977 Mar;59(3):386–396. doi: 10.1172/JCI108651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kanamori K., Parivar F., Ross B. D. A 15N NMR study of in vivo cerebral glutamine synthesis in hyperammonemic rats. NMR Biomed. 1993 Jan-Feb;6(1):21–26. doi: 10.1002/nbm.1940060104. [DOI] [PubMed] [Google Scholar]
  24. Kanamori K., Ross B. D. 15N n.m.r. measurement of the in vivo rate of glutamine synthesis and utilization at steady state in the brain of the hyperammonaemic rat. Biochem J. 1993 Jul 15;293(Pt 2):461–468. doi: 10.1042/bj2930461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kaneko T., Urade Y., Watanabe Y., Mizuno N. Production, characterization, and immunohistochemical application of monoclonal antibodies to glutaminase purified from rat brain. J Neurosci. 1987 Jan;7(1):302–309. doi: 10.1523/JNEUROSCI.07-01-00302.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kvamme E., Lenda K. Regulation of glutaminase by exogenous glutamate, ammonia and 2-oxoglutarate in synaptosomal enriched preparation from rat brain. Neurochem Res. 1982 Jun;7(6):667–678. doi: 10.1007/BF00965520. [DOI] [PubMed] [Google Scholar]
  27. Löscher W., Hönack D., Gramer M. Use of inhibitors of gamma-aminobutyric acid (GABA) transaminase for the estimation of GABA turnover in various brain regions of rats: a reevaluation of aminooxyacetic acid. J Neurochem. 1989 Dec;53(6):1737–1750. doi: 10.1111/j.1471-4159.1989.tb09239.x. [DOI] [PubMed] [Google Scholar]
  28. MEISTER A. Preparation of enzymatic reactions of the keto analogues of asparagine and glutamine. J Biol Chem. 1953 Feb;200(2):571–589. [PubMed] [Google Scholar]
  29. Makar T. K., Nedergaard M., Preuss A., Hertz L., Cooper A. J. Glutamine transaminase K and omega-amidase activities in primary cultures of astrocytes and neurons and in embryonic chick forebrain: marked induction of brain glutamine transaminase K at time of hatching. J Neurochem. 1994 May;62(5):1983–1988. doi: 10.1046/j.1471-4159.1994.62051983.x. [DOI] [PubMed] [Google Scholar]
  30. Norenberg M. D., Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 1979 Feb 2;161(2):303–310. doi: 10.1016/0006-8993(79)90071-4. [DOI] [PubMed] [Google Scholar]
  31. Ogawa S., Boens C. C., Lee T. M. A 31P nuclear magnetic resonance study of the pH gradient and the inorganic phosphate distribution across the membrane in intact rat liver mitochondria. Arch Biochem Biophys. 1981 Sep;210(2):740–747. doi: 10.1016/0003-9861(81)90241-1. [DOI] [PubMed] [Google Scholar]
  32. Paulsen R. E., Odden E., Fonnum F. Importance of glutamine for gamma-aminobutyric acid synthesis in rat neostriatum in vivo. J Neurochem. 1988 Oct;51(4):1294–1299. doi: 10.1111/j.1471-4159.1988.tb03099.x. [DOI] [PubMed] [Google Scholar]
  33. Raabe W. A., Onstad G. R. Ammonia and methionine sulfoximine intoxication. Brain Res. 1982 Jun 24;242(2):291–298. doi: 10.1016/0006-8993(82)90312-2. [DOI] [PubMed] [Google Scholar]
  34. Szerb J. C. Storage and release of endogenous and labelled GABA formed from [3H]glutamine and [14C]glucose in hippocampal slices: effect of depolarization. Brain Res. 1984 Feb 20;293(2):293–303. doi: 10.1016/0006-8993(84)91236-8. [DOI] [PubMed] [Google Scholar]
  35. Thanki C. M., Sugden D., Thomas A. J., Bradford H. F. In vivo release from cerebral cortex of [14C]glutamate synthesized from [U-14C]glutamine. J Neurochem. 1983 Sep;41(3):611–617. doi: 10.1111/j.1471-4159.1983.tb04785.x. [DOI] [PubMed] [Google Scholar]
  36. Veech R. L., Harris R. L., Veloso D., Veech E. H. Freeze-blowing: a new technique for the study of brain in vivo. J Neurochem. 1973 Jan;20(1):183–188. doi: 10.1111/j.1471-4159.1973.tb12115.x. [DOI] [PubMed] [Google Scholar]
  37. Ward H. K., Bradford H. F. Relative activities of glutamine synthetase and glutaminase in mammalian synaptosomes. J Neurochem. 1979 Jul;33(1):339–342. doi: 10.1111/j.1471-4159.1979.tb11737.x. [DOI] [PubMed] [Google Scholar]
  38. Ward H. K., Thanki C. M., Bradford H. F. Glutamine and glucose as precursors of transmitter amino acids: ex vivo studies. J Neurochem. 1983 Mar;40(3):855–860. doi: 10.1111/j.1471-4159.1983.tb08058.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES