Abstract
The measurement of endogenous substances that function as biological antioxidants is of importance because the values obtained might be an index of future health. We quantified three water-soluble antioxidants by high-pressure liquid chromatography with electrochemical detection (h.p.l.c.-e.c.). Current-voltage relationships made at various settings of the D2 porous graphite electrode help to identify ascorbic acid, glutathione and uric acid. The antioxidants are determined simultaneously and without need for derivatization. The method is seen to be useful for comparison of normal rat liver with liver that had undergone oxidative stress through ischaemia. Antioxidant levels in liver, kidney, pancreas and intestinal mucosa are presented and compared with literature values. Endogenous contents of oxidized forms of ascorbic acid and glutathione become apparent following exposure of tissue samples to a strong reductant such as 2-mercapthoethanol.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams J. D., Jr, Lauterburg B. H., Mitchell J. R. Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther. 1983 Dec;227(3):749–754. [PubMed] [Google Scholar]
- Ames B. N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6858–6862. doi: 10.1073/pnas.78.11.6858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker B. F. Towards the physiological function of uric acid. Free Radic Biol Med. 1993 Jun;14(6):615–631. doi: 10.1016/0891-5849(93)90143-i. [DOI] [PubMed] [Google Scholar]
- Bessems G. J., Hoenders H. J. Distribution of aromatic and fluorescent compounds within single human lenses. Exp Eye Res. 1987 Jun;44(6):817–824. doi: 10.1016/s0014-4835(87)80044-1. [DOI] [PubMed] [Google Scholar]
- Bode A. M., Green E., Yavarow C. R., Wheeldon S. L., Bolken S., Gomez Y., Rose R. C. Ascorbic acid regeneration by bovine iris-ciliary body. Curr Eye Res. 1993 Jul;12(7):593–601. doi: 10.3109/02713689309001838. [DOI] [PubMed] [Google Scholar]
- Di Stefano A., Pizzichini M., Leoncini R., Vannoni D., Pagani R., Marinello E. Quantitative separation of uric acid and allantoin from rat liver tissue. Biochim Biophys Acta. 1992 Jul 21;1117(1):1–6. doi: 10.1016/0304-4165(92)90154-m. [DOI] [PubMed] [Google Scholar]
- Grootveld M., Halliwell B. Measurement of allantoin and uric acid in human body fluids. A potential index of free-radical reactions in vivo? Biochem J. 1987 May 1;243(3):803–808. doi: 10.1042/bj2430803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUGHES R. E. REDUCTION OF DEHYDROASORBIC ACID BY ANIMAL TISSUES. Nature. 1964 Sep 5;203:1068–1069. doi: 10.1038/2031068a0. [DOI] [PubMed] [Google Scholar]
- Harvey P. R., Ilson R. G., Strasberg S. M. The simultaneous determination of oxidized and reduced glutathiones in liver tissue by ion pairing reverse phase high performance liquid chromatography with a coulometric electrochemical detector. Clin Chim Acta. 1989 Apr 14;180(3):203–212. doi: 10.1016/0009-8981(89)90001-6. [DOI] [PubMed] [Google Scholar]
- Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
- Langemann H., Torhorst J., Kabiersch A., Krenger W., Honegger C. G. Quantitative determination of water- and lipid-soluble antioxidants in neoplastic and non-neoplastic human breast tissue. Int J Cancer. 1989 Jun 15;43(6):1169–1173. doi: 10.1002/ijc.2910430634. [DOI] [PubMed] [Google Scholar]
- Niki E. Interaction of ascorbate and alpha-tocopherol. Ann N Y Acad Sci. 1987;498:186–199. doi: 10.1111/j.1749-6632.1987.tb23761.x. [DOI] [PubMed] [Google Scholar]
- Pérez R., López M., Barja de Quiroga G. Aging and lung antioxidant enzymes, glutathione, and lipid peroxidation in the rat. Free Radic Biol Med. 1991;10(1):35–39. doi: 10.1016/0891-5849(91)90019-y. [DOI] [PubMed] [Google Scholar]
- Schuette S., Rose R. C. Renal transport and metabolism of nicotinic acid. Am J Physiol. 1986 May;250(5 Pt 1):C694–C703. doi: 10.1152/ajpcell.1986.250.5.C694. [DOI] [PubMed] [Google Scholar]
- Svardal A. M., Mansoor M. A., Ueland P. M. Determination of reduced, oxidized, and protein-bound glutathione in human plasma with precolumn derivatization with monobromobimane and liquid chromatography. Anal Biochem. 1990 Feb 1;184(2):338–346. doi: 10.1016/0003-2697(90)90691-2. [DOI] [PubMed] [Google Scholar]
- Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
- Varma S. D. Ascorbic acid and the eye with special reference to the lens. Ann N Y Acad Sci. 1987;498:280–306. doi: 10.1111/j.1749-6632.1987.tb23768.x. [DOI] [PubMed] [Google Scholar]
